6 research outputs found

    Joint Elastic Cloud and Virtual Network Framework for Application Performance-cost Optimization

    Get PDF
    International audienceCloud computing infrastructures are providing resources on demand for tackling the needs of large-scale distributed applications. To adapt to the diversity of cloud infras- tructures and usage, new operation tools and models are needed. Estimating the amount of resources consumed by each application in particular is a difficult problem, both for end users who aim at minimizing their costs and infrastructure providers who aim at control- ling their resources allocation. Furthermore, network provision is generally not controlled on clouds. This paper describes a framework automating cloud resources allocation, deploy- ment and application execution control. It is based on a cost estimation model taking into account both virtual network and nodes managed by the cloud. The flexible provisioning of network resources permits the optimization of applications performance and infrastructure cost reduction. Four resource allocation strategies relying on the expertise that can be cap- tured in workflow-based applications are considered. Results of these strategies are confined virtual infrastructure descriptions that are interpreted by the HIPerNet engine responsible for allocating, reserving and configuring physical resources. The evaluation of this framework was carried out on the Aladdin/Grid'5000 testbed using a real application from the area of medical image analysis

    The Contemporary Affirmation of Taxonomy and Recent Literature on Workflow Scheduling and Management in Cloud Computing

    Get PDF
    The Cloud computing systemspreferred over the traditional forms of computing such as grid computing, utility computing, autonomic computing is attributed forits ease of access to computing, for its QoS preferences, SLA2019;s conformity, security and performance offered with minimal supervision. A cloud workflow schedule when designed efficiently achieves optimalre source sage, balance of workloads, deadline specific execution, cost control according to budget specifications, efficient consumption of energy etc. to meet the performance requirements of today2019; svast scientific and business requirements. The businesses requirements under recent technologies like pervasive computing are motivating the technology of cloud computing for further advancements. In this paper we discuss some of the important literature published on cloud workflow scheduling

    QVIA-SDN: Towards QoS-Aware Virtual Infrastructure Allocation on SDN-based Clouds

    Get PDF
    International audienceVirtual Infrastructures (VIs) emerged as a potential solution for network evolution and cloud services provisioning on the Internet. Deploying VIs, however, is still challenging mainly due to a rigid management of networking resources. By splitting control and data planes, Software-Defined Networks (SDN) enable custom and more flexible management, allowing for reducing data center usage , as well as providing mechanisms to guarantee bandwidth and latency control on switches and endpoints. However, reaping the benefits of SDN for VI embedding in cloud data centers is not trivial. Allocation frameworks require combined information from the control plan (e.g., isolation policies, flow identification) and data (e.g., storage capacity, flow table configuration) to find a suitable solution. In this context, the present work proposes a mixed integer programming formulation for the VI allocation problem that considers the main challenges regarding SDN-based cloud data centers. Some constraints are then relaxed resulting in a linear program, for which a heuristic is introduced. Experimental results of the mechanism, termed as QVIA-SDN, highlight that an SDN-aware allocation solution can reduce the data center usage and improve the quality-of-service perceived by hosted tenants

    Investigations into Elasticity in Cloud Computing

    Full text link
    The pay-as-you-go model supported by existing cloud infrastructure providers is appealing to most application service providers to deliver their applications in the cloud. Within this context, elasticity of applications has become one of the most important features in cloud computing. This elasticity enables real-time acquisition/release of compute resources to meet application performance demands. In this thesis we investigate the problem of delivering cost-effective elasticity services for cloud applications. Traditionally, the application level elasticity addresses the question of how to scale applications up and down to meet their performance requirements, but does not adequately address issues relating to minimising the costs of using the service. With this current limitation in mind, we propose a scaling approach that makes use of cost-aware criteria to detect the bottlenecks within multi-tier cloud applications, and scale these applications only at bottleneck tiers to reduce the costs incurred by consuming cloud infrastructure resources. Our approach is generic for a wide class of multi-tier applications, and we demonstrate its effectiveness by studying the behaviour of an example electronic commerce site application. Furthermore, we consider the characteristics of the algorithm for implementing the business logic of cloud applications, and investigate the elasticity at the algorithm level: when dealing with large-scale data under resource and time constraints, the algorithm's output should be elastic with respect to the resource consumed. We propose a novel framework to guide the development of elastic algorithms that adapt to the available budget while guaranteeing the quality of output result, e.g. prediction accuracy for classification tasks, improves monotonically with the used budget.Comment: 211 pages, 27 tables, 75 figure
    corecore