81 research outputs found

    Power Line Communication (PLC) Impulsive Noise Mitigation: A Review

    Get PDF
    Power Line Communication (PLC) is a technology which transforms the power line into pathways for the conveyance of broadband data. It has the advantage for it can avoid new installation since the current installation used for electrical power can also be used for data transmission. However, this power line channel presents a harsh environment for data transmission owing to the challenges of impulsive noise, high attenuation, selective fading and etc. Impulsive noise poses a severe challenge as its Power Spectral Density (PSD) is between 10–15dB above background noise. For good performance of the PLC system, this noise must be mitigated.  This paper presents a review of the techniques for the mitigation of impulsive noise in PLC which is classified into four categories, namely time domain, time/frequency domain, error correction code and other techniques. Time domain technique is a memoryless nonlinear technique where the signal's amplitude only changes according to a specified threshold without changing the phase.  Mitigation of impulsive noise is carried out on the received time domain signal before the demodulation FFT operation of the OFDM. Time/Frequency technique is a method of mitigating impulsive noise on the received signal at both before FFT demodulation and after FFT demodulation of the OFDM system. Error correction code technique is the application of forward error correction code by adding redundancy bits to the useful data bits for detection and possibly correction of error occurring during transmission.  Identifying the best performing technique will enhance the deployment of the technique while exploring the PLC channel capacity enhancement in the future. The best performing scheme in each of the category were selected and their BER vs SNR curves were compared with respect to the impulsive noise + awgn curve. Amongst all of these techniques, the error correction code technique had a performance that presents almost an outright elimination of impulsive noise in power line channel. Keywords: Impulsive noise, time domain, time/frequency domain, error correction code, sparse Bayesian learning, recursive detection and modified PLC-DMT

    Vector Approximate Message Passing based Channel Estimation for MIMO-OFDM Underwater Acoustic Communications

    Full text link
    Accurate channel estimation is critical to the performance of orthogonal frequency-division multiplexing (OFDM) underwater acoustic (UWA) communications, especially under multiple-input multiple-output (MIMO) scenarios. In this paper, we explore Vector Approximate Message Passing (VAMP) coupled with Expected Maximum (EM) to obtain channel estimation (CE) for MIMO OFDM UWA communications. The EM-VAMP-CE scheme is developed by employing a Bernoulli-Gaussian (BG) prior distribution for the channel impulse response, and hyperparameters of the BG prior distribution are learned via the EM algorithm. Performance of the EM-VAMP-CE is evaluated through both synthesized data and real data collected in two at-sea UWA communication experiments. It is shown the EM-VAMP-CE achieves better performance-complexity tradeoff compared with existing channel estimation methods.Comment: Journal:IEEE Journal of Oceanic Engineering(Date of Submission:2022-06-25

    Fifty Years of Noise Modeling and Mitigation in Power-Line Communications.

    Get PDF
    Building on the ubiquity of electric power infrastructure, power line communications (PLC) has been successfully used in diverse application scenarios, including the smart grid and in-home broadband communications systems as well as industrial and home automation. However, the power line channel exhibits deleterious properties, one of which is its hostile noise environment. This article aims for providing a review of noise modeling and mitigation techniques in PLC. Specifically, a comprehensive review of representative noise models developed over the past fifty years is presented, including both the empirical models based on measurement campaigns and simplified mathematical models. Following this, we provide an extensive survey of the suite of noise mitigation schemes, categorizing them into mitigation at the transmitter as well as parametric and non-parametric techniques employed at the receiver. Furthermore, since the accuracy of channel estimation in PLC is affected by noise, we review the literature of joint noise mitigation and channel estimation solutions. Finally, a number of directions are outlined for future research on both noise modeling and mitigation in PLC

    Applications of artificial intelligence in powerline communications in terms of noise detection and reduction : a review

    Get PDF
    Abstract: The technology which utilizes the power line as a medium for transferring information known as powerline communication (PLC) has been in existence for over a hundred years. It is beneficial because it avoids new installation since it uses the present installation for electrical power to transmit data. However, transmission of data signals through a power line channel usually experience some challenges which include impulsive noise, frequency selectivity, high channel attenuation, low line impedance etc. The impulsive noise exhibits a power spectral density within the range of 10-15 dB higher than the background noise, which could cause a severe problem in a communication system. For better outcome of the PLC system, these noises must be detected and suppressed. This paper reviews various techniques used in detecting and mitigating the impulsive noise in PLC and suggests the application of machine learning algorithms for the detection and removal of impulsive noise in power line communication systems
    • …
    corecore