66 research outputs found

    Coherent receiver design and analysis for interleaved division multiple access (IDMA)

    Get PDF
    This thesis discusses a new multiuser detection technique for cellular wireless communications. Multiuser communications is critical in cellular systems as multiple terminals (users) transmit to base stations (or wireless infrastructure). Efficient receiver methods are needed to maximise the performance of these links and maximise overall throughput and coverage while minimising inter-cell interference. Recently a new technique, Interleave-Division Multiple Access (IDMA), was developed as a variant of direct-sequence code division multiple access (DS-CDMA). In this new scheme users are separated by user specific interleavers, and each user is allocated a low rate code. As a result, the bandwidth expansion is devoted to the low rate code and not weaker spreading codes. IDMA has shown to have significant performance gains over traditional DS-CDMA with a modest increase in complexity. The literature on IDMA primarily focuses on the design of low rate forward error correcting (FEC) codes, as well as channel estimation. However, the practical aspects of an IDMA receiver such as timing acquisition, tracking, block asynchronous detection, and cellular analysis are rarely studied. The objective of this thesis is to design and analyse practical synchronisation, detection and power optimisation techniques for IDMA systems. It also, for the first time, provides a novel analysis and design of a multi-cell system employing a general multiuser receiver. These tools can be used to optimise and evaluate the performance of an IDMA communication system. The techniques presented in this work can be easily employed for DS-CDMA or other multiuser receiver designs with slight modification. Acquisition and synchronisation are essential processes that a base-station is required to perform before user's data can be detected and decoded. For high capacity IDMA systems, which can be heavily loaded and operate close to the channel capacity, the performance of acquisition and tracking can be severely affected by multiple access interference as well as severe drift. This thesis develops acquisition and synchronisation algorithms which can cope with heavy multiple access interference as well as high levels of drift. Once the timing points have been estimated for an IDMA receiver the detection and decoding process can proceed. An important issue with uplink systems is the alignment of frame boundaries for efficient detection. This thesis demonstrates how a fully asynchronous system can be modelled for detection. This thesis presents a model for the frame asynchronous IDMA system, and then develops a maximum likelihood receiver for the proposed system. This thesis develops tools to analyse and optimise IDMA receivers. The tools developed are general enough to be applied to other multiuser receiver techniques. The conventional EXIT chart analysis of unequal power allocated multiuser systems use an averaged EXIT chart analysis for all users to reduce the complexity of the task. This thesis presents a multidimensional analysis for power allocated IDMA, and shows how it can be utilised in power optimisation. Finally, this work develops a novel power zoning technique for multicell multiuser receivers using the optimised power levels, and illustrates a particular example where there is a 50% capacity improvement using the proposed scheme. -- provided by Candidate

    Non-Coherent Successive Relaying and Cooperation: Principles, Designs, and Applications

    Full text link

    Space-time diversity for CDMA systems over frequency-selective fading channels

    Get PDF
    Supporting the expected high data rates required by wireless Internet and high-speed multimedia services is one of the basic requirements in broadband mobile wireless systems. However, the achievable capacity and data rate of wireless communication systems are limited by the time-varying nature of the channel. Efficient techniques for combating the time-varying effects of wireless channels can be achieved by utilizing different forms of diversity. In recent years, transmit diversity based on space-time coding (STC) has received more attention as an effective technique for combating fading. On the other hand, most existing space-time diversity techniques have been developed for flat-fading channels. Given the fact that wireless channels are generally frequency-selective, in this thesis, we aim to investigate the performance of space-time diversity schemes for wideband code-division multiple-access (WCDMA) systems over frequency-selective fading channels. The proposed receiver in this case is a rake-type receiver, which exploits the path diversity inherent to multipath propagation. Then, a decorrelator detector is used to mitigate the multiple access interference (MAI) and the known near-far problem. We derive the bit error rate (BER) expression over frequency-selective fading channels considering both the fast and slow fading cases. Finally, we show that our proposed receiver achieves the full system diversity through simulation and analytical results. Most of the work conducted in this area considers perfect knowledge of the channel at the receiver. Hence, channel identification brings significant challenges to multiple-input multiple-output (MIMO) CDMA systems. In light of this, we propose a channel estimation and data detection scheme based on the superimposed training-based approach. The proposed scheme enhances the performance by eliminating the MAI from both the channel and data estimates by employing two decorrelators; channel and data decorrelators. The performance of the proposed estimation technique is investigated over frequency-selective slow fading channels where we derived a closed-form expression for the BER as a function of the number of users, K , the number resolvable paths, L , and the number of receive antennas, V . Finally, our proposed scheme is shown to be more robust to channel estimation errors. Furthermore, both the analytical and simulation results indicate that the full system diversity is achieved. Considering that training estimation techniques suffer either from low spectral efficiency (i.e., conventional training approach) or from high pilot power consumption (i.e., superimposed training-based approach), in the last part of the thesis, we present an iterative joint detection and estimation (JDE) using the expectation-maximization (EM) algorithm for MIMO CDMA systems over frequency-selective fading channels. We also derive a closed-form expression for the optimized weight coefficients of the EM algorithm, which was shown to provide significant performance enhancement relative to the conventional equal-weight EM-based signal decomposition. Finally, our simulation results illustrate that the proposed receiver achieves near-optimum performance with modest complexity using very few training symbols

    Energy efficiency and interference management in long term evolution-advanced networks.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Cellular networks are continuously undergoing fast extraordinary evolution to overcome technological challenges. The fourth generation (4G) or Long Term Evolution-Advanced (LTE-Advanced) networks offer improvements in performance through increase in network density, while allowing self-organisation and self-healing. The LTE-Advanced architecture is heterogeneous, consisting of different radio access technologies (RATs), such as macrocell, smallcells, cooperative relay nodes (RNs), having various capabilities, and coexisting in the same geographical coverage area. These network improvements come with different challenges that affect users’ quality of service (QoS) and network performance. These challenges include; interference management, high energy consumption and poor coverage of marginal users. Hence, developing mitigation schemes for these identified challenges is the focus of this thesis. The exponential growth of mobile broadband data usage and poor networks’ performance along the cell edges, result in a large increase of the energy consumption for both base stations (BSs) and users. This due to improper RN placement or deployment that creates severe inter-cell and intracell interferences in the networks. It is therefore, necessary to investigate appropriate RN placement techniques which offer efficient coverage extension while reducing energy consumption and mitigating interference in LTE-Advanced femtocell networks. This work proposes energy efficient and optimal RN placement (EEORNP) algorithm based on greedy algorithm to assure improved and effective coverage extension. The performance of the proposed algorithm is investigated in terms of coverage percentage and number of RN needed to cover marginalised users and found to outperform other RN placement schemes. Transceiver design has gained importance as one of the effective tools of interference management. Centralised transceiver design techniques have been used to improve network performance for LTE-Advanced networks in terms of mean square error (MSE), bit error rate (BER) and sum-rate. The centralised transceiver design techniques are not effective and computationally feasible for distributed cooperative heterogeneous networks, the systems considered in this thesis. This work proposes decentralised transceivers design based on the least-square (LS) and minimum MSE (MMSE) pilot-aided channel estimations for interference management in uplink LTE-Advanced femtocell networks. The decentralised transceiver algorithms are designed for the femtocells, the macrocell user equipments (MUEs), RNs and the cell edge macrocell UEs (CUEs) in the half-duplex cooperative relaying systems. The BER performances of the proposed algorithms with the effect of channel estimation are investigated. Finally, the EE optimisation is investigated in half-duplex multi-user multiple-input multiple-output (MU-MIMO) relay systems. The EE optimisation is divided into sub-optimal EE problems due to the distributed architecture of the MU-MIMO relay systems. The decentralised approach is employed to design the transceivers such as MUEs, CUEs, RN and femtocells for the different sub-optimal EE problems. The EE objective functions are formulated as convex optimisation problems subject to the QoS and transmit powers constraints in case of perfect channel state information (CSI). The non-convexity of the formulated EE optimisation problems is surmounted by introducing the EE parameter substractive function into each proposed algorithms. These EE parameters are updated using the Dinkelbach’s algorithm. The EE optimisation of the proposed algorithms is achieved after finding the optimal transceivers where the unknown interference terms in the transmit signals are designed with the zero-forcing (ZF) assumption and estimation errors are added to improve the EE performances. With the aid of simulation results, the performance of the proposed decentralised schemes are derived in terms of average EE evaluation and found to be better than existing algorithms

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Timing and Frequency Synchronization in Practical OFDM Systems

    No full text
    Orthogonal frequency-division multiplexing (OFDM) has been adopted by many broadband wireless communication systems for the simplicity of the receiver technique to support high data rates and user mobility. However, studies also show that the advantage of OFDM over the single-carrier modulation schemes could be substantially compromised by timing or frequency estimation errors at the receiver. In this thesis we investigate the synchronization problem for practical OFDM systems using a system model generalized from the IEEE 802.11 and IEEE 802.16 standards. For preamble based synchronization schemes, which are most common in the downlink of wireless communication systems, we propose a novel timing acquisition algorithm which minimizes false alarm probability and indirectly improves correct detection probability. We then introduce a universal fractional carrier frequency offset (CFO) estimator that outperforms conventional methods at low signal to noise ratio with lower complexity. More accurate timing and frequency estimates can be obtained by our proposed frequency-domain algorithms incorporating channel knowledge. We derive four joint frequency, timing, and channel estimators with different approximations, and then propose a hybrid integer CFO estimation scheme to provide flexible performance and complexity tradeoffs. When the exact channel delay profile is unknown at the receiver, we present a successive timing estimation algorithm to solve the timing ambiguity. Both analytical and simulation results are presented to confirm the performance of the proposed methods in various realistic channel conditions. ..

    Turbo and Raptor Coded SIC Receiver Performance for the Coexistence of LTE and Wi-Fi

    Get PDF
    In this thesis, a coexistence of LTE and Wi-Fi is proposed. We assume that both LTE and Wi-Fi transmit in the same band simultaneously, the Wi-Fi signal, which is assumed to be the stronger signal, can be decoded first. We can achieve a good performance of LTE transmission by using a Successive Interference Cancellation (SIC) scheme. The LTE signal, which is the weaker signal, can be decoded successfully as though there is no Wi-Fi interference. We implement a Raptor code for Wi-Fi and a Turbo code for LTE. By adjusting the code rate, the Raptor codes are adaptive to diferent channel conditions especially with interference. Meanwhile, the Turbo codes are standardized in LTE transmission. We propose a new antenna integration design, in which only one antenna is used. As a result, the space of mobile devices can be saved and the interference caused by diferent transmissions can be avoided. Then, we study two scenarios based on diferent channels. Under the first scenario, a primary user and a secondary user transmit their own signals over the same AWGN channel. The simulation results indicate that by using a SIC scheme, an increasing system capacity can be obtained by the secondary transmission, with no sacrifce of the primary user's performance. In the second scenario, the LTE and Wi-Fi transmit over a Rayleigh fading channel simultaneously. A straightforward estimation scheme is adopted to estimate the Channel State Information (CSI) at the receiver. We discuss two cases according to the CSI. The first case is that the CSI is available at the receiver. A novel scheme is proposed to overcome the disadvantages of a slow block fading channel. In this scheme, we implement an interlever at both the transmitter and receiver, and therefore utilize the CSI efficiently at the receiver to improve the system performance. In the second case the CSI is available at both the transmitter and receiver. An adaptive power control scheme is proposed to adjust the transmitted power to a desired level, and therefore improve the system
    • …
    corecore