149 research outputs found

    The arity gap of polynomial functions over bounded distributive lattices

    Full text link
    Let A and B be arbitrary sets with at least two elements. The arity gap of a function f: A^n \to B is the minimum decrease in its essential arity when essential arguments of f are identified. In this paper we study the arity gap of polynomial functions over bounded distributive lattices and present a complete classification of such functions in terms of their arity gap. To this extent, we present a characterization of the essential arguments of polynomial functions, which we then use to show that almost all lattice polynomial functions have arity gap 1, with the exception of truncated median functions, whose arity gap is 2.Comment: 7 page

    Additive decomposability of functions over abelian groups

    Get PDF
    Abelian groups are classified by the existence of certain additive decompositions of group-valued functions of several variables with arity gap 2.Comment: 17 page

    Linearly definable classes of Boolean functions

    Get PDF
    International audienceIn this paper we address the question "How many properties of Boolean functions can be defined by means of linear equations?" It follows from a result by Sparks that there are countably many such linearly definable classes of Boolean functions. In this paper, we refine this result by completely describing these classes. This work is tightly related with the theory of function minors and stable classes, a topic that has been widely investigated in recent years by several authors including Maurice Pouzet
    corecore