2,452 research outputs found

    Join-irreducible Boolean functions

    Full text link
    This paper is a contribution to the study of a quasi-order on the set Ω\Omega of Boolean functions, the \emph{simple minor} quasi-order. We look at the join-irreducible members of the resulting poset Ω~\tilde{\Omega}. Using a two-way correspondence between Boolean functions and hypergraphs, join-irreducibility translates into a combinatorial property of hypergraphs. We observe that among Steiner systems, those which yield join-irreducible members of Ω~\tilde{\Omega} are the -2-monomorphic Steiner systems. We also describe the graphs which correspond to join-irreducible members of Ω~\tilde{\Omega}.Comment: The current manuscript constitutes an extension to the paper "Irreducible Boolean Functions" (arXiv:0801.2939v1

    Derivative of functions over lattices as a basis for the notion of interaction between attributes

    Full text link
    The paper proposes a general notion of interaction between attributes, which can be applied to many fields in decision making and data analysis. It generalizes the notion of interaction defined for criteria modelled by capacities, by considering functions defined on lattices. For a given problem, the lattice contains for each attribute the partially ordered set of remarkable points or levels. The interaction is based on the notion of derivative of a function defined on a lattice, and appears as a generalization of the Shapley value or other probabilistic values

    Finite Boolean Algebras for Solid Geometry using Julia's Sparse Arrays

    Full text link
    The goal of this paper is to introduce a new method in computer-aided geometry of solid modeling. We put forth a novel algebraic technique to evaluate any variadic expression between polyhedral d-solids (d = 2, 3) with regularized operators of union, intersection, and difference, i.e., any CSG tree. The result is obtained in three steps: first, by computing an independent set of generators for the d-space partition induced by the input; then, by reducing the solid expression to an equivalent logical formula between Boolean terms made by zeros and ones; and, finally, by evaluating this expression using bitwise operators. This method is implemented in Julia using sparse arrays. The computational evaluation of every possible solid expression, usually denoted as CSG (Constructive Solid Geometry), is reduced to an equivalent logical expression of a finite set algebra over the cells of a space partition, and solved by native bitwise operators.Comment: revised version submitted to Computer-Aided Geometric Desig

    Belief functions on lattices

    Get PDF
    We extend the notion of belief function to the case where the underlying structure is no more the Boolean lattice of subsets of some universal set, but any lattice, which we will endow with a minimal set of properties according to our needs. We show that all classical constructions and definitions (e.g., mass allocation, commonality function, plausibility functions, necessity measures with nested focal elements, possibility distributions, Dempster rule of combination, decomposition w.r.t. simple support functions, etc.) remain valid in this general setting. Moreover, our proof of decomposition of belief functions into simple support functions is much simpler and general than the original one by Shafer

    The algebra of Boolean matrices, correspondence functors, and simplicity

    Get PDF
    We determine the dimension of every simple module for the algebra of the monoid of all relations on a finite set (i.e. Boolean matrices). This is in fact the same question as the determination of the dimension of every evaluation of a simple correspondence functor. The method uses the theory of such functors developed in [BT2, BT3], as well as some new ingredients in the theory of finite lattices.Comment: arXiv admin note: text overlap with arXiv:1510.0303

    Lattices of choice functions and consensus problems

    Get PDF
    . In this paper we consider the three classes of choice functionssatisfying the three significant axioms called heredity (H), concordance (C) and outcast (O). We show that the set of choice functions satisfying any one of these axioms is a lattice, and we study the properties of these lattices. The lattice of choice functions satisfying (H) is distributive, whereas the lattice of choice functions verifying (C) is atomistic and lower bounded, and so has many properties. On the contrary, the lattice of choice functions satisfying(O) is not even ranked. Then using results of the axiomatic and metric latticial theories of consensus as well as the properties of our three lattices of choice functions, we get results to aggregate profiles of such choice functions into one (or several) collective choice function(s).Aggregation, choice function, concordance, consensus, distance, distributive, heredity, lattice, outcast
    • …
    corecore