182,802 research outputs found
John H. Jennings
An obituary for John H. Jennings, Iowa farmer and former Iowa state legislator
John H. Jennings
An obituary for John H. Jennings, Iowa farmer and former Iowa state legislator
AIA Annual report 1955; Charting the course of the profession
Includes photos of: John C. Martin, Ira N. Frisbee, Virgil S. Tilly, Maurice H. Stans, 1908-1998; Alvin R. Jennings, William M. Black, Ed Herlihy, Jacob S. Seidman, 1901-; T. Coleman Andrews, Paul K. Webster, Mrs. Maurice H. Stans, John L. Carey, 1904-; Norman F. Swanson, Mrs. Norman F. Swanson, James M. Gilman, Mrs. James M. Gilmanhttps://egrove.olemiss.edu/aicpa_arprts/1150/thumbnail.jp
Radiocarbon Date List XI: Radiocarbon Dates from Marine Sediment Cores of the Iceland, Greenland, and Northeast Canadian Arctic Shelves and Nares Strait
Radiocarbon Date List XI contains an annotated listing of 178 AMS radiocarbon dates on samples from marine (169 samples) and lake (9 samples) sediment cores. Marine sediment cores, from which the samples for dating were taken, were collected on the Greenland Shelf, Baffin Bay, and the Eastern Canadian Arctic shelf. About 80% of the marine samples for dating were collected on the SW to N Icelandic shelf. The lake sediment cores were collected in northwestern Iceland. For dating of the marine samples, we submitted molluscs (117 samples), benthic and planktic foraminifera (45 samples), plant macrofauna (3 samples), and one serpulid worm. For dating of the lake cores, we submitted wood (8 samples) and one peat sample. The Conventional Radiocarbon Ages range from 294±9114C yr BP to 34,600±640 14C yr BP. The dates have been used to address a variety of research questions. The dates constrain the timing of high northern latitude late Quaternary environmental fluctuations, which include glacier extent, sea level history, isostatic rebound, sediment input, and ocean circulation. The dates also allowed assessment of the accuracy of commonly used reservoir correction. The samples were submitted by INSTAAR and affiliated researchers
Aquatic food security:insights into challenges and solutions from an analysis of interactions between fisheries, aquaculture, food safety, human health, fish and human welfare, economy and environment
Fisheries and aquaculture production, imports, exports and equitability of distribution determine the supply of aquatic food to people. Aquatic food security is achieved when a food supply is sufficient, safe, sustainable, shockproof and sound: sufficient, to meet needs and preferences of people; safe, to provide nutritional benefit while posing minimal health risks; sustainable, to provide food now and for future generations; shock-proof, to provide resilience to shocks in production systems and supply chains; and sound, to meet legal and ethical standards for welfare of animals, people and environment. Here, we present an integrated assessment of these elements of the aquatic food system in the United Kingdom, a system linked to dynamic global networks of producers, processors and markets. Our assessment addresses sufficiency of supply from aquaculture, fisheries and trade; safety of supply given biological, chemical and radiation hazards; social, economic and environmental sustainability of production systems and supply chains; system resilience to social, economic and environmental shocks; welfare of fish, people and environment; and the authenticity of food. Conventionally, these aspects of the food system are not assessed collectively, so information supporting our assessment is widely dispersed. Our assessment reveals trade-offs and challenges in the food system that are easily overlooked in sectoral analyses of fisheries, aquaculture, health, medicine, human and fish welfare, safety and environment. We highlight potential benefits of an integrated, systematic and ongoing process to assess security of the aquatic food system and to predict impacts of social, economic and environmental change on food supply and demand
Listen to Nice
In describing Humphrey Jennings’ wartime documentary propaganda film, 'Listen to Britain' (1942), a film with an overtly poetic sensibility and dominantly musical soundtrack, John Corner asserts that ‘through listening to
Britain, we are enabled to properly look at it'. This idea of sound leading our attention to the images has underpinned much of the collaborative
work between composer and sound designer, Geoffrey Cox, and documentary filmmaker, Keith Marley. It is in this context that the article will analyse an extract of A Film About Nice (Marley and Cox 2010), a contemporary
re-imagining of Jean Vigo’s silent documentary, 'A propos de Nice' (1930). Reference will be made throughout to the historical context, and the filmic and theoretical influences that have informed the way music and creative sound design have been used to place emphasis on hearing a place, as much as seeing it
Stanford University’s John Otterbein Snyder: Student, Collaborator, and Colleague of David Starr Jordan and Charles Henry Gilbert
John Otterbein Snyder (1867–1943) was an early student of David Starr Jordan at Stanford University and subsequently rose to become an assistant professor there. During his 34 years with the university he taught a wide variety of
courses in various branches of zoology and advised numerous students. He eventually mentored 8 M.A. and 4 Ph.D. students to completion at Stanford. He also assisted in
the collection of tens of thousands of fish specimens from the western Pacific, central Pacific, and the West Coast of North America, part of the time while stationed as “Naturalist” aboard the U.S. Fish Commission’s Steamer Albatross (1902–06). Although his early publications dealt
mainly with fish groups and descriptions (often as a junior author with Jordan), after 1910 he became more autonomous and eventually rose to become one of the Pacific salmon, Oncorhynchus spp., experts on the West Coast. Throughout his career, he was especially esteemed by colleagues as “a
stimulating teacher,” “an excellent biologist,” and “a fine man
CCSDS Advanced Orbiting Systems Virtual Channel Access Service for QoS MACHETE Model
To support various communications requirements imposed by different missions, interplanetary communication protocols need to be designed, validated, and evaluated carefully. Multimission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in "Simulator of Space Communication Networks" (NPO-41373), NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. By building abstract behavioral models of network protocols, one can validate performance after identifying the appropriate metrics of interest. The innovators have extended the MACHETE model library to include a generic link-layer Virtual Channel (VC) model supporting quality-of-service (QoS) controls based on IP streams. The main purpose of this generic Virtual Channel model addition was to interface fine-grain flow-based QoS (quality of service) between the network and MAC layers of the QualNet simulator, a commercial component of MACHETE. This software model adds the capability of mapping IP streams, based on header fields, to virtual channel numbers, allowing extended QoS handling at link layer. This feature further refines the QoS v existing at the network layer. QoS at the network layer (e.g. diffserv) supports few QoS classes, so data from one class will be aggregated together; differentiating between flows internal to a class/priority is not supported. By adding QoS classification capability between network and MAC layers through VC, one maps multiple VCs onto the same physical link. Users then specify different VC weights, and different queuing and scheduling policies at the link layer. This VC model supports system performance analysis of various virtual channel link-layer QoS queuing schemes independent of the network-layer QoS systems
State Highlights 4/28/1954
This is the student newspaper from Western State High School, the high school that was on the campus of Western Michigan University, then called State Highlights, in 1954
- …
