713,360 research outputs found

    Does Order Negotiation Improve The Job-Shop Workload Control?

    Get PDF
    Work flows in a job-shop are determined not only by the release load and the time between release factors, but also by the number of accepted orders. There has been extensive research on workload and input-output control aiming at improving the performance of manufacturing operations in job-shops. This paper explores the idea of controlling the workload since the acceptance/rejection of orders stage. A new acceptance/rejection rule is proposed, and tests are conducted to study the sensitivity of job-shop performance to different order acceptance parameters, like the tolerance of the workload limit and the due date extension acceptance. It also evaluates the effect of the negotiation phase of the proposed acceptance rule on the job-shop performance using a simulation model of a generic random job-shop. The extensive simulation experiments allow us to conclude that having a negotiation phase prior to rejection improves almost all workload performance measures. We also conclude that different tolerances of the workload limit affect slightly the performance of the job-shop.job shop, order negotiation, workload control

    A branch and bound and simulated annealing approach for job shop scheduling

    Get PDF
    This paper presents two approaches to the solution of the job shop scheduling problem, namely the branch and bound, and simulated annealing approach. The objective is to schedule the jobs on the machines so that the total completion time is minimized. In the branch and bound approach, the job shop scheduling problem is represented by a disjunctive graph, then the optimal schedule is obtained using the branch and bound algorithm while simulated annealing is a local search based algorithm which will slightly perturb the initial feasible solution to decrease the makespan

    Dynamic scheduling in a multi-product manufacturing system

    Get PDF
    To remain competitive in global marketplace, manufacturing companies need to improve their operational practices. One of the methods to increase competitiveness in manufacturing is by implementing proper scheduling system. This is important to enable job orders to be completed on time, minimize waiting time and maximize utilization of equipment and machineries. The dynamics of real manufacturing system are very complex in nature. Schedules developed based on deterministic algorithms are unable to effectively deal with uncertainties in demand and capacity. Significant differences can be found between planned schedules and actual schedule implementation. This study attempted to develop a scheduling system that is able to react quickly and reliably for accommodating changes in product demand and manufacturing capacity. A case study, 6 by 6 job shop scheduling problem was adapted with uncertainty elements added to the data sets. A simulation model was designed and implemented using ARENA simulation package to generate various job shop scheduling scenarios. Their performances were evaluated using scheduling rules, namely, first-in-first-out (FIFO), earliest due date (EDD), and shortest processing time (SPT). An artificial neural network (ANN) model was developed and trained using various scheduling scenarios generated by ARENA simulation. The experimental results suggest that the ANN scheduling model can provided moderately reliable prediction results for limited scenarios when predicting the number completed jobs, maximum flowtime, average machine utilization, and average length of queue. This study has provided better understanding on the effects of changes in demand and capacity on the job shop schedules. Areas for further study includes: (i) Fine tune the proposed ANN scheduling model (ii) Consider more variety of job shop environment (iii) Incorporate an expert system for interpretation of results. The theoretical framework proposed in this study can be used as a basis for further investigation

    Genetic algorithm and neural network hybrid approach for job-shop scheduling

    Get PDF
    Copyright @ 1998 ACTA PressThis paper proposes a genetic algorithm (GA) and constraint satisfaction adaptive neural network (CSANN) hybrid approach for job-shop scheduling problems. In the hybrid approach, GA is used to iterate for searching optimal solutions, CSANN is used to obtain feasible solutions during the iteration of genetic algorithm. Simulations have shown the valid performance of the proposed hybrid approach for job-shop scheduling with respect to the quality of solutions and the speed of calculation.This research is supported by the National Nature Science Foundation and National High -Tech Program of P. R. China

    Applying Machine Based Decomposition in 2-Machine Flow Shops

    Get PDF
    The Shifting Bottleneck (SB) heuristic is among the most successful approximation methods for solving the Job Shop problem. It is essentially a machine based decomposition procedure where a series of One Machine Sequencing Problems (OMSPs) are solved. However, such a procedure has been reported to be highly ineffective for the Flow Shop problems (Jain and Meeran 2002). In particular, we show that for the 2-machine Flow Shop problem, the SB heurisitc will deliver the optimal solution in only a small number of instances. We examine the reason behind the failure of the machine based decomposition method for the Flow Shop. An optimal machine based decomposition procedure is formulated for the 2-machine Flow Shop, the time complexity of which is worse than that of the celebrated Johnsons Rule. The contribution of the present study lies in showing that the same machine based decomposition procedures which are so successful in solving complex Job Shops can also be suitably modified to optimally solve the simpler Flow Shops.

    A linear programming-based method for job shop scheduling

    Get PDF
    We present a decomposition heuristic for a large class of job shop scheduling problems. This heuristic utilizes information from the linear programming formulation of the associated optimal timing problem to solve subproblems, can be used for any objective function whose associated optimal timing problem can be expressed as a linear program (LP), and is particularly effective for objectives that include a component that is a function of individual operation completion times. Using the proposed heuristic framework, we address job shop scheduling problems with a variety of objectives where intermediate holding costs need to be explicitly considered. In computational testing, we demonstrate the performance of our proposed solution approach

    A hybrid job-shop scheduling system

    Get PDF
    The intention of the scheduling system developed at the Fraunhofer-Institute for Material Flow and Logistics is the support of a scheduler working in a job-shop. Due to the existing requirements for a job-shop scheduling system the usage of flexible knowledge representation and processing techniques is necessary. Within this system the attempt was made to combine the advantages of symbolic AI-techniques with those of neural networks
    corecore