

GENETIC ALGORITHM AND NEURAL NETWORK HYBRID APPROACH
FOR JOB-SHOP SCHEDULING

KAI ZHAO, SHENGXIANG YANG AND DINGWEI WANG

Northeastern University, Shenyang, Liaoning, 110006, P. R. China, Email: xmliu@ramm.neu.edu.cn

Abstract This paper proposes a genetic algorithm
(GA) and constraint satisfaction adaptive neural network
(CSANN) hybrid approach for job-shop scheduling
problems. In the hybrid approach, GA is used to iterate
for searching optimal solutions, CSANN is used to obtain
feasible solutions during the iteration of genetic algorithm.
Simulations have shown the valid performance of the
proposed hybrid approach for job-shop scheduling with
respect to the quality of solutions and the speed of
calculation.

Keywords job-shop scheduling, genetic algorithm,
neural network

1. INTRODUCTION

Generally deterministic job-shop scheduling problems
can be stated as follows [1]: given n jobs that have to be
processed on m machines in a prescribed order under
certain restrictive assumptions, the objective of job-shop
scheduling is to decide how to arrange the processing
orders and starting times of operations sharing the same
machine for each machine, in order to optimize certain
criteria, e.g., minimize the makespan. Job-shop scheduling
belongs to the large class of NP-hard problem, it is very
hard to find its optimal solution. Researchers turned to
search its near-optimal solutions to meet practical need
with all kind of heuristic algorithms [2]. More recently
GAs have been used to solve job-shop scheduling
problems [3, 4]. Ever since Foo and Takefuji [5] first used
neural network to solve job-shop scheduling problem.
After that, several neural network architectures have been
presented for job-shop scheduling [6, 7]. All these neural
networks are basely non-adaptive networks.

In this paper we propose a new hybrid approach of GA
and CSANN to solve job-shop scheduling problem. In the
hybrid approach, GA is used to iterate for searching
optimal solutions, CSANN is used to obtain feasible
solutions during the iteration of genetic algorithm.
CSANN has the property of easily mapping the constraints
of scheduling problem into its architecture and removing
the violations of the mapped constraints during its
processing. Meanwhile CSANN has the property of
adaptively adjusting its weights of connections and biases
of neural units according to the actual situation of

constraint violations to remove these violations.
Simulations have shown that the hybrid approach has good
performance with respect to the quality of solutions and
the speed of calculation.

2. JOB-SHOP SCHEDULING PROBLEM

Generally for job-shop scheduling problem there are
two types of constraints: sequence constraint and resource
constraint. The first type states that two operations of a
job cannot be processed at the same time. The second
states that no more than one job can be performed on one
machine at the same time. Job-shop scheduling can be
viewed as an optimization problem, bounded by both
sequence and resource constraints. Different
manufacturing systems require different optimization
criteria, such as stock size, mean lead time and makespan.
Minimization of the makespan will be used in this paper.

Denote { }N n= 1, ,� , { }M m= 1, ,� . Let ni be the

operation number of job i. Let Oikq represent operation k

of job i on machine q, Sikq and Tikq represent the

starting time and processing time of Oikq , Sie qi
 and

Tie qi
 represent the starting time and processing time of the

last operation of job i respectively. The processing time of
each operation is known and fixed. Denote ri and d i as

the release and due date of job i. Pi denotes the set of

operation pairs [Oikp , Oilq] where operation Oikp must

precede operation Oilq of job i. Let Rq be the set of all

operations on machine q. The mathematical formulation is
presented as follows:
 Minimize E S T

i N
ie q ie qi i

= +
∈

max()

 s.t.
 S S Tilq ikp ikp− ≥ ,

 { }[,] , , , , ,O O P k l n i Nikp ilq i i∈ ∈ ∈1� (1)

 S S T or S S Tjlq ikq ikq ikq jlq jlq− ≥ − ≥ ,

O O R i j N q Mikq jlq q, , , ,∈ ∈ ∈ (2)

r S d Ti ijq i ijq≤ ≤ − , { }i N j n q Mi∈ ∈ ∈, , , ,1� (3)

where equation (1) represents the sequence constraint;

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/338254?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

equation (2), in a disjunctive type, represents resource
constraints; equation (3) represents the release date and
due date constraints. The cost function is the ending time
of the latest operation, i.e., maximal complete time of
job-shop scheduling problem.

3. MODEL OF CSANN

3.1 UNITS OF CSANN

Generally neural unit consists of two parts: a linear
summator and a nonlinear activation function which are
serialized. The summator of unit i receives all activations
A j (j n= 1, ,�) from connected units and sums the

received activations, weighted with connection weight
Wij , together with a bias Bi . The output of summator is

the net input N i , this net input is passed through an acti-

vation function f ()⋅ , resulting in the activation Ai of

unit i. The summator and the activation function are

defined as : A f N f W A Bi i ij jj

n
i= = ∗ +

=�() (())
1

, where

Wij is the connection weight from unit j to unit i.

Based on the general neural unit, CSANN contains three
kinds of units: S-units, SC-units and RC-units. The first
kind of units represent the starting times of all operations.
Each S-unit represents one operation of job-shop
scheduling problem with activation representing the
starting time of the operation. The second represent
whether the sequence constraints are violated. The third
represent whether the resource constraints are violated.

The net input of a S-unit, e.g. SU i , is calculated by

N t W A tSU i ij SC j
j

() (())= ∗�

+ ∗ + −� (()) ()W A t A tik RC k
k

SU i
1 (4)

where the net input of unit SU i is summed from three

parts. The first part comes from the weighted activations
of SC-units connected with SU i , which implements

feedback adjustments because of sequence violations. The
second part comes from the weighted activations of
RC-units connected with SU i , implementing feedback

adjustments because of resource violations. The third part
comes from the previous activation, with weight being +1,
of unit SU i itself.

The activation function of S-units is a deterministic
linear-segmented function as follows:

A t

r N t r

N t r N t d T

d T N t d T
SU

i SU i

SU i SU i SU

i SU SU i SU

i

i

i i i

i i i

()

()

() ()

()

=
<

≤ ≤ −
− > −

�

�
�

�
�

 (5)

where ri and d i are the release date and due date of job

i to which the operation corresponding to SU i belongs.

TSUi
 is the processing time of the operation

corresponding to unit SU i . This activation function

implements the release date and due date constraints
described by equation (3).

The SC-units receive the incoming weighted activations
from the connected S-units, representing operations of the
same job. The RC-units receive the incoming weighted
activations from the connected S-units, representing
operations to be processed on the same machine. The net
input of a SC-unit or RC-unit has the same definition form
as follows:

N t W A t BC ij SU
j

Ci j i
() (())= ∗ +� (6)

where Ci equals SCi or RCi , BC i
is the bias of unit

SCi or unit RCi . The bias BC i
 is added to the

incoming weighted activations of connected units and
equals the processing time of relative operation.

The activation function of a SC-unit or RC-unit is a
linear-segmented function as follows.

A t
N t

N t N tC
C

C C
i

i

i i

()
()

() ()
=

≥
− <

�
�
�

��

0 0

0
 (7)

The activation of a SC-unit or RC-unit being greater
than zero means the corresponding sequence constraint or
resource constraint is violated and there are feedback
adjustments from this SC-unit or RC-unit to connected
S-units through adaptive weighted connections.

3.2 ADAPTIVE CONNECTIONS

All units of CSANN are connected according to the two
kinds of sequence and resource constraints of specific
job-shop scheduling problem, resulting in two blocks:
SC-block (sequence constraints block) and RC-block
(resource constraints block). Each unit of SC-block
contains two S-units, responding to two operations of a job,
and one SC-unit, representing whether the sequence
constraint between these two operations is violated (see
Fig.1). Each unit of RC-block contains two S-units,
responding to two operations sharing the same machine,
and one RC-unit, representing whether the resource
constraint between these two operations is violated (see
Fig.2).

 +1

 ASU ikp

 W1 W2 ASU ilq

 W3 W4

 +1 +1

Fig.1 SC-BLOCK UNIT

SUi lq SU i k p

BSCi k l
SCi k l

I SU i lq
I SU ikp

 +1

 W5 W6

 ASU ikq
 ASU jlq

 W7 W8

 +1 +1

Fig.2 RC-BLOCK UNIT

Fig.1 presents an example of SC-block unit, denoted by
SCBi kl . S-units SU i k p and SU i lq represent two

operations Oi k p and Oi lq of job i. Their activations

ASU i k p
 and ASU i l q

 represent the starting times Si k p

and Si lq of Oi k p and Oi lq . The SC-unit SCi kl

represents whether the sequence constraint of equation (1)
between Oi k p and Oi lq is violated, with BSCi k l

 being

its bias. The weights and bias are valued as follows:
W W W W W W B TSC ikpikl1 2 3 41 1= − = = − = = −, , , , (8)

where W is positive feedback adjustment parameter (the
same where W appears latterly). If violation exists at time
t, the activation of SCi kl is calculated by

A t A t T A tSC SU ikp SUikl ikp ilq
() () ()= + −

= + −S t T S tikp ikp ilq() () (9)

and the feedback adjustments from SCi kl to SU i k p and

SU i lq are shown as follows:

 S t S t W A tikp ikp SCikl
() () ()+ = − ∗1 (10)

 S t S t W A tilq ilq SCikl
() () ()+ = + ∗1 (11)

Above equations show that the feedback adjustments
from SCi kl puts back the starting time Sikp of Oikp in

time axis, while putting forward Silq . Thus the sequence

violation between Oikp and Oilq can be removed.

Fig.2 presents an example of RC-block unit, denoted by
RCBqi kjl , representing the resource constraint between

Oi kq and O jlq on machine q. At time t during the

processing of network, the weights and bias are adaptively
valued as following two cases show.

Case 1: If S t S tikq jlq() ()≤ , equation (12) holds.

W W W W W W B TRC ikqqikjl5 6 7 81 1= − = = − = = −, , , , (12)

In this case RCBqi kjl represents a sequence constraint

described by the first disjunctive equation of equation (2).
If violation exists, the activation of RCqi kjl and feedback

adjustments are calculated by
 A t A t T A tRC SU ikq SUqikjl ikq jlq

() () ()= + −

= + −S t T S tikq ikq jlq() () (13)

 S t S t W A tikq ikq RCqikjl
() () ()+ = − ∗1 (14)

 S t S t W A tjlq jlq RCqikjl
() () ()+ = + ∗1 (15)

Case 2: If S t S tikq jlq() ()≥ , equation (16) holds.

W W W W W W B TRC jlqqikjl5 6 7 81 1= = − = = − = −, , , , (16)

In this case RCBqi kjl represents a sequence constraint

described by the second disjunctive equation of equation
(2). If there exists violation, the activation of RCqi kjl and

the feedback adjustments are calculated by
A t S t T S tRC jlq jlq ikqqikjl

() () ()= + − (17)

 S t S t W A tikq ikq RCqikjl
() () ()+ = + ∗1 (18)

 S t S t W A tjlq jlq RCqikjl
() () ()+ = − ∗1 (19)

3.3 SOLVING STEPS OF CSANN

Step 1: Build up CSANN model, set H and W values;
Step 2: Initialize the starting time Sikp ()0 for each

operation Oikp as the initial net input I SUi k p
 of each

S-unit SU ikp ;

Step 3: Run each SC-unit SCikl of SC-block, calculate

its activation with equation (9). A tSCikl
() ≠ 0 means the

dissatisfaction of sequence constraint, then adjust
activations of relative S-units with equations (10, 11);

Step 4: Run each RC-unit RCqikjl of RC-block,

calculate its activation with equation (13) or (17).
A tRCqikjl

() ≠ 0 means the dissatisfaction of resource

constraint corresponding to equation (2). Then adjust
S tikp ()+1 and S tilq ()+1 with equations (14, 15) or

equations (18, 19) or with equations (20);
Step 5: Repeat step 3 and step 4 until all units are in

stable states without changes, which means that the
sequence and resource constraints are satisfied and the
feasible solution is obtained.

During the processing of CSANN there may appear the
phenomenon of “dead lock” which can result in no
feasible solution. In order to remove “dead lock” , we use
the following heuristic: exchange the orders of two near
operations sharing the same machine by exchanging their
starting times. Assuming Oikq , O Rjlq q∈ , during the

processing of CSANN, if H t Hqikjl () ≥ , the following

two equations work.
S t S ti kq j lq() ()+ =1 , S t S tj lq i kq() ()+ =1 (20)

where variable H tqikjl () is the summed times that

operation pairsOikq and O jlq have their starting times

changed continuously with the same adjusting effects
because of resource conflict on machine q at time t ever
since the previous zero-reset. H is a positive integer. With
above heuristic, “dead lock” can be effectively avoided.

SU jlq

BRCqi k j l
RCqikjl

SUi kq

I SU jlq
I SU ikq

4. HYBRID APPROACH

4.1 GENETIC ALGORITHM

The main components of proposed GA are as follows:
Encoding mode: Each chromosome is formed of

several subchromosomes, one for each machine. The
length of chromosome is the total operations of all jobs.
Each subchromosomes is formed of natural number string,
each number identifying the job number to which the
operation that has to be processed on the relevant machine
belongs. For example, a subchromosome being 563241 of
machine i means on machine i the first operation to be
processed belongs to job 5, second belongs to job 6, and
so on.

Fitness function: The fitness of chromosome i in
generation K, denoted by C iK () , is calculated by:

F i MAX M iK K() ()= − , where F iK () is the fitness of

C iK () , M iK () is its relevant makespan and MAX is a

prescribed big enough positive integer. The bigger the
fitness, the shorter the makespan.

Select policy: To form the population of new generation,
a set of individuals is selected from old population to
reproduce itself, the select takes place in a random way but
with a probability proportional to fitness. The probability
of C iK () being selected to reproduce is:

P i
f i f

f j f
K

K K

K Kj

PN
()

()

[()]
=

−

−
=� 1

 (21)

where { }f f i i PNK K= =min (), , ,1� and PN is the size

of population.
Genetic operator: The crossover operators used are

Partially Mapped Crossover (PMX) and Uniform
Crossover (UX); The mutation operator are Converse
Mutation (CM), Right Shift Mutation (RSM) and Swap
Mutation (SM). All genetic operations are limited in
subchromosome to create meaningful “children” .

During the processes of crossover and mutation, the
starting times of operations are changed according to the
changes of relevant genes. For example, table 1 shows a
subchromosome and the starting times of operations to
which relevant genes correspond orderly before and after
crossover or mutation operation.

Status Subchromosome Starting times
Pre-operation 1 2 3 4 5 6 0,2,6,9,12,14

Operating … …
Post-operation 5 1 3 4 6 2 0,2,6,9,12,14

Table 1 STARTING TIMES CHANGES WITH GENES

 Through the operating of genetic operator, the
chromosomes which represent feasible solutions may be
changed into chromosomes which represent non-feasible
solutions. Then the obtained non-feasible solutions are
processed by CSANN to solve new feasible solutions to

which corresponding chromosomes form the population of
the new next generation.

Stop threshold: The maximal generation (MG) is used.

4.2 MAIN STEPS OF HYBRID APPROACH

Step 1: Set values for PN, MG, the crossover
probability PC and the mutation probability PM ;

Step 2: Randomly create PN chromosomes, the initial
solutions of chromosomes are deduced as follows:
Assuming a subchromosome being J J Jn1 2� ,

{ }J ni ∈ 1, ,� ({ }i n∈ 1, ,�), J i is the job number to

which operation i on relevant machine belongs, then the
starting times of the operations are calculated by:

{ }S S S T i ni i i1 10 1 1= = + ∈ −+, , , ,� , where Si and

Ti are the starting time and processing time of operation i.

The obtained initial solution is used as the initial state of
CSANN to solve feasible solution. The chromosomes
conversed from these feasible solutions constitute the
initial population, i.e., the first generation.

Step 3: Calculate the fitness for each chromosome;
Step 4: Calculate the selecting probability for each

chromosome and randomly select individuals according to
the probability into the mate pool to reproduce;

Step 5: From the selected set of individuals select two
chromosomes to generate new chromosomes by applying
different crossover and mutation operators, the obtained
chromosomes represent nonfeasible solutions. Use
CSANN to solve feasible solutions from these nonfeasible
solutions. The chromosomes conversed from obtained
feasible solutions constitute the new population, i.e. the
new generation. From the new generation randomly select
an individual to be replaced by the best individual of last
generation.

Step 6: If stop threshold is reached, stop the process,
otherwise go to step 3.

5. SIMULATION STUDY

We use a famous 6/6/J/ Cmax problem [4] as example,

which has minimal makespan of 55. The simulations are
finished on a PC 586/133 under Visual C++ 5.0.

We first use CSANN only to solve the example problem
to test the performance of CSANN. 100 experiments are
executed. For 100 experiments the first one is executed
under zero initial condition with initial starting times of all
operations setting to zero, the other 99 experiments are
carried out with the initial starting times of all operations
valued in a random uniformed distribution between
[0,100]. Of all experiments, the two parameters are valued
as follows: H = 5 , W = 05. . The completion time
restriction for all jobs is given in advance, which is used as
the common due date for jobs in the simulations. And the
release dates for all jobs are set to zero. Table 2 shows the
statistics of simulation results with respect to average,
minimum and maximum of obtained makespan and the
program runtimes respectively. In Table 2, runtime is zero

means it is less than one second.

Makespan
(E)

Runtime
(Sec.)

Completion
time

restriction

Initial starting
times set for
operations ave/min/max ave/min/max

200 0 76 1

200
Randomly
generated

106/96/117 1/0/1

58 0 58 50

58
Randomly
generated

58/58/58 48/25/97

Table 2 SIMULATION RESULTS BY CSANN ONLY

Table 2 shows the feasibility of CSANN for job-shop
scheduling problems. From table 2 we can see: 1) Given
zero initial solution, the CSANN can find good schedules
for different complete time restriction; 2) Given
appropriate complete time restriction, the CSANN can
always find very good solution for most actual problems; 3)
Because of the parallel processing capability of neural
network, the solving speed of CSANN is very high.

Secondly we use the proposed hybrid approach to solve
the same problem to test its performance. The parameters
of CSANN are the same with above case: H = 5,W = 05. .
And the complete time restriction for CSANN is set to a
positive integer , big enough for CSANN to solve feasible
solutions, e.g. 500. The parameters of GA are as follows:
PN=20, MG=200, MAX=10000, PC =1 and PM =0.4.

Table 3 presents the simulation results as to the average,
minimum and maximum of makespan and the program
runtimes respectively.

Crossover
mode

PMX UX

Makespan
 (E)

Makespan
(E) Mutation

mode ave min max

Run
time

(Sec.) ave min max

Run
time

(Sec.)

CM 62 60 72 137 60 58 65 114
RSM 64 61 78 150 63 60 69 135
SM 63 61 74 145 62 59 75 130

Table 3 RESULTS BY HYBRID APPROACH

Fig. 3 shows a Gantt chart of a near-optimal solution
with makespan being 58, obtained by the hybrid approach.
From table 4 and Fig.3 we can see: the hybrid approach
has good performance for job-shop scheduling problems
with respect to the quality of solutions and the solving
speed. Comparing between the crossover and mutation
operator we can find that the UX crossover operator is
better than PMX for the hybrid approach and the CM
mutation operator is better than the other two mutation
operators: RSM and SM.

Fig.3 A NEAR-OPTIMAL SOLUTION

6. CONCLUSIONS

The proposed hybrid approach for job-shop scheduling
is an idea originated from combining generic algorithm
and CSANN. The adaptive property of CSANN makes it
different from other constraints satisfaction networks and
results in a simpler architecture of CSANN. When only
CSANN is used for practical job-shop scheduling
problems the quality of obtained feasible solution heavily
depends on the choice of a complete time restriction.

When GA is used in a hybrid approach with CSANN,
good schedules can always been obtained independent on
the complete time restriction prescribed for CSANN.
Simulations have shown that the proposed hybrid
approach for job-shop scheduling has good performance
as to the quality of solution and the speed of calculation.

Acknowledgment. This research is supported by the
National Nature Science Foundation and National High
-Tech Program of P. R. China.

REFERENCES

[1] R. W. Conway, W.L. Maxwell and L.W. Miller,
Theory of Scheduling (Reading, MA: Addison-Wesley,
1967)

[2] S. French, Sequencing and scheduling: An
introduction to the mathematics of the Job-shop (New
York: Wiley, 1982)

[3] Hsiao-Lan Fang, Peter Ross and Dave Corne, A
promising genetic algorithm approach to job-shop
scheduling, rescheduling and open-shop scheduling
problems, Proc. 5th Int. Conf. Genetic Algorithms,
1994, 81-100.

[4] R. Nakano and T. Yamada, Conventional genetic
algorithm for job-shop scheduling, Proc. 4th Int. Conf.
on Genetic Algorithms and Their Application, 1991.

[5] S. Y. Foo and Y. Takefuji, Neural networks for
solving job-shop scheduling: Part 1. Problem represen-
tation, Proc. IEEE IJCNN,

�
, 1988 ,275-282.

[6] D. N. Zhou, V. Charkassky, T. R. Baldwin and D. W.
Hong, Scaling neural network for job-shop scheduling,
Proc. IEEE IJCNN, New York, 3, 1989, 889-894.

[7] T. M. Willems and L. E. M. W. Brandts,
Implementing heuristics as an optimization criterion in
neural networks for job-shop scheduling, Journal of
Intelligent Manufacturing , 6, 1995, 377-387.

