1,213 research outputs found

    Benefits of data augmentation for NMT-based text normalization of user-generated content

    Get PDF
    One of the most persistent characteristics of written user-generated content (UGC) is the use of non-standard words. This characteristic contributes to an increased difficulty to automatically process and analyze UGC. Text normalization is the task of transforming lexical variants to their canonical forms and is often used as a pre-processing step for conventional NLP tasks in order to overcome the performance drop that NLP systems experience when applied to UGC. In this work, we follow a Neural Machine Translation approach to text normalization. To train such an encoder-decoder model, large parallel training corpora of sentence pairs are required. However, obtaining large data sets with UGC and their normalized version is not trivial, especially for languages other than English. In this paper, we explore how to overcome this data bottleneck for Dutch, a low-resource language. We start off with a publicly available tiny parallel Dutch data set comprising three UGC genres and compare two different approaches. The first is to manually normalize and add training data, a money and time-consuming task. The second approach is a set of data augmentation techniques which increase data size by converting existing resources into synthesized non-standard forms. Our results reveal that a combination of both approaches leads to the best results

    Improving Lexical Choice in Neural Machine Translation

    Full text link
    We explore two solutions to the problem of mistranslating rare words in neural machine translation. First, we argue that the standard output layer, which computes the inner product of a vector representing the context with all possible output word embeddings, rewards frequent words disproportionately, and we propose to fix the norms of both vectors to a constant value. Second, we integrate a simple lexical module which is jointly trained with the rest of the model. We evaluate our approaches on eight language pairs with data sizes ranging from 100k to 8M words, and achieve improvements of up to +4.3 BLEU, surpassing phrase-based translation in nearly all settings.Comment: Accepted at NAACL HLT 201

    MTRNet: A Generic Scene Text Eraser

    Full text link
    Text removal algorithms have been proposed for uni-lingual scripts with regular shapes and layouts. However, to the best of our knowledge, a generic text removal method which is able to remove all or user-specified text regions regardless of font, script, language or shape is not available. Developing such a generic text eraser for real scenes is a challenging task, since it inherits all the challenges of multi-lingual and curved text detection and inpainting. To fill this gap, we propose a mask-based text removal network (MTRNet). MTRNet is a conditional adversarial generative network (cGAN) with an auxiliary mask. The introduced auxiliary mask not only makes the cGAN a generic text eraser, but also enables stable training and early convergence on a challenging large-scale synthetic dataset, initially proposed for text detection in real scenes. What's more, MTRNet achieves state-of-the-art results on several real-world datasets including ICDAR 2013, ICDAR 2017 MLT, and CTW1500, without being explicitly trained on this data, outperforming previous state-of-the-art methods trained directly on these datasets.Comment: Presented at ICDAR2019 Conferenc
    • …
    corecore