125,400 research outputs found
Colour image processing and texture analysis on images of porterhouse steak meat
This paper outlines two colour image processing and texture analysis techniques applied to meat images and assessment of error due to the use of JPEG compression at image capture. JPEG error analysis was performed by capturing TIFF and JPEG images, then calculating the RMS difference and applying a calibration between block boundary features and subjective visual JPEG scores. Both scores indicated high JPEG quality. Correction of JPEG blocking error was trialled and found to produce minimal improvement in the RMS difference. The texture analysis methods used were singular value decomposition over pixel blocks and complex cell analysis. The block singular values were classified as meat or non- meat by Fisher linear discriminant analysis with the colour image processing result used as ‘truth.’ Using receiver operator characteristic (ROC) analysis, an area under the ROC curve of 0.996 was obtained, demonstrating good correspondence between the colour image processing and the singular values. The complex cell analysis indicated a ‘texture angle’ expected from human inspection
High capacity steganographic method based upon JPEG
The two most important aspects of any image-based
steganographic system are the quality of the stegoimage and the capacity of the cover image. This paper proposes a novel and high capacity steganographic approach based on Discrete Cosine Transformation (DCT) and JPEG compression. JPEG technique divides the input image into non-overlapping blocks of 8x8 pixels and uses the DCT transformation. However, our proposed method divides the cover image into nonoverlapping
blocks of 16x16 pixels. For each quantized
DCT block, the least two-significant bits (2-LSBs) of each middle frequency coefficient are modified to embed two secret bits. Our aim is to investigate the data hiding efficiency using larger blocks for JPEG compression. Our experiment result shows that the proposed approach can provide a higher information hiding capacity than Jpeg-Jsteg and Chang et al. methods based on the conventional blocks of 8x8 pixels. Furthermore, the produced stego-images are almost identical to the original cover images
Simulated Annealing for JPEG Quantization
JPEG is one of the most widely used image formats, but in some ways remains
surprisingly unoptimized, perhaps because some natural optimizations would go
outside the standard that defines JPEG. We show how to improve JPEG compression
in a standard-compliant, backward-compatible manner, by finding improved
default quantization tables. We describe a simulated annealing technique that
has allowed us to find several quantization tables that perform better than the
industry standard, in terms of both compressed size and image fidelity.
Specifically, we derive tables that reduce the FSIM error by over 10% while
improving compression by over 20% at quality level 95 in our tests; we also
provide similar results for other quality levels. While we acknowledge our
approach can in some images lead to visible artifacts under large
magnification, we believe use of these quantization tables, or additional
tables that could be found using our methodology, would significantly reduce
JPEG file sizes with improved overall image quality.Comment: Appendix not included in arXiv version due to size restrictions. For
full paper go to:
http://www.eecs.harvard.edu/~michaelm/SimAnneal/PAPER/simulated-annealing-jpeg.pd
Error resilience analysis of wireless image transmission using JPEG, JPEG 2000 and JPWL
The wireless extension of the JPEG 2000 standard formally known as JPWL is the newest international standard for still image compression. Different from all previous standards, this new standard was created specifically for wireless imaging applications. This paper examines the error resilience performance of the JPEG, JPEG 2000 and JPWL standards in combating multi-path and fading impairments in Rayleigh fading channels. Comprehensive objective and subjective results are presented in relation to the error resilience performance of these three standards under various conditions. The major findings in this paper reveal that a CRC approach is not a viable option for protecting wireless image data when not used in
conjunction with an efficient retransmission strategy. In addition, the Reed-Solomon error correction codes in JPWL provide strong protection for wireless image transmission. However, any stronger protection beyond RS(64,32) yields diminishing returns
- …
