2,205 research outputs found

    Iterative Temporal Learning and Prediction with the Sparse Online Echo State Gaussian Process

    Get PDF
    Abstract—In this work, we contribute the online echo state gaussian process (OESGP), a novel Bayesian-based online method that is capable of iteratively learning complex temporal dy-namics and producing predictive distributions (instead of point predictions). Our method can be seen as a combination of the echo state network with a sparse approximation of Gaussian processes (GPs). Extensive experiments on the one-step prediction task on well-known benchmark problems show that OESGP produced statistically superior results to current online ESNs and state-of-the-art regression methods. In addition, we characterise the benefits (and drawbacks) associated with the considered online methods, specifically with regards to the trade-off between computational cost and accuracy. For a high-dimensional action recognition task, we demonstrate that OESGP produces high accuracies comparable to a recently published graphical model, while being fast enough for real-time interactive scenarios. I

    Spatio-temporal learning with the online finite and infinite echo-state Gaussian processes

    Get PDF
    Successful biological systems adapt to change. In this paper, we are principally concerned with adaptive systems that operate in environments where data arrives sequentially and is multivariate in nature, for example, sensory streams in robotic systems. We contribute two reservoir inspired methods: 1) the online echostate Gaussian process (OESGP) and 2) its infinite variant, the online infinite echostate Gaussian process (OIESGP) Both algorithms are iterative fixed-budget methods that learn from noisy time series. In particular, the OESGP combines the echo-state network with Bayesian online learning for Gaussian processes. Extending this to infinite reservoirs yields the OIESGP, which uses a novel recursive kernel with automatic relevance determination that enables spatial and temporal feature weighting. When fused with stochastic natural gradient descent, the kernel hyperparameters are iteratively adapted to better model the target system. Furthermore, insights into the underlying system can be gleamed from inspection of the resulting hyperparameters. Experiments on noisy benchmark problems (one-step prediction and system identification) demonstrate that our methods yield high accuracies relative to state-of-the-art methods, and standard kernels with sliding windows, particularly on problems with irrelevant dimensions. In addition, we describe two case studies in robotic learning-by-demonstration involving the Nao humanoid robot and the Assistive Robot Transport for Youngsters (ARTY) smart wheelchair

    Online Spatio-Temporal Gaussian Process Experts with Application to Tactile Classification

    No full text

    When and how to help: An iterative probabilistic model for learning assistance by demonstration

    Get PDF

    Online Ensemble Learning of Sensorimotor Contingencies

    Get PDF
    Forward models play a key role in cognitive agents by providing predictions of the sensory consequences of motor commands, also known as sensorimotor contingencies (SMCs). In continuously evolving environments, the ability to anticipate is fundamental in distinguishing cognitive from reactive agents, and it is particularly relevant for autonomous robots, that must be able to adapt their models in an online manner. Online learning skills, high accuracy of the forward models and multiple-step-ahead predictions are needed to enhance the robots’ anticipation capabilities. We propose an online heterogeneous ensemble learning method for building accurate forward models of SMCs relating motor commands to effects in robots’ sensorimotor system, in particular considering proprioception and vision. Our method achieves up to 98% higher accuracy both in short and long term predictions, compared to single predictors and other online and offline homogeneous ensembles. This method is validated on two different humanoid robots, namely the iCub and the Baxter

    Incrementally Learning Objects by Touch: Online Discriminative and Generative Models for Tactile-Based Recognition

    Get PDF

    Data-Driven Forecasting of High-Dimensional Chaotic Systems with Long Short-Term Memory Networks

    Full text link
    We introduce a data-driven forecasting method for high-dimensional chaotic systems using long short-term memory (LSTM) recurrent neural networks. The proposed LSTM neural networks perform inference of high-dimensional dynamical systems in their reduced order space and are shown to be an effective set of nonlinear approximators of their attractor. We demonstrate the forecasting performance of the LSTM and compare it with Gaussian processes (GPs) in time series obtained from the Lorenz 96 system, the Kuramoto-Sivashinsky equation and a prototype climate model. The LSTM networks outperform the GPs in short-term forecasting accuracy in all applications considered. A hybrid architecture, extending the LSTM with a mean stochastic model (MSM-LSTM), is proposed to ensure convergence to the invariant measure. This novel hybrid method is fully data-driven and extends the forecasting capabilities of LSTM networks.Comment: 31 page
    corecore