13,532 research outputs found

    Strong edge features for image coding

    Get PDF
    A two-component model is proposed for perceptual image coding. For the first component of the model, the watershed operator is used to detect strong edge features. Then, an efficient morphological interpolation algorithm reconstructs the smooth areas of the image from the extracted edge information, also known as sketch data. The residual component, containing fine textures, is separately coded by a subband coding scheme. The morphological operators involved in the coding of the primary component perform very efficiently compared to conventional techniques like the LGO operator, used for the edge extraction, or the diffusion filters, iteratively applied for the interpolation of smooth areas in previously reported sketch-based coding schemes.Peer ReviewedPostprint (published version

    Multiscale Representations for Manifold-Valued Data

    Get PDF
    We describe multiscale representations for data observed on equispaced grids and taking values in manifolds such as the sphere S2S^2, the special orthogonal group SO(3)SO(3), the positive definite matrices SPD(n)SPD(n), and the Grassmann manifolds G(n,k)G(n,k). The representations are based on the deployment of Deslauriers--Dubuc and average-interpolating pyramids "in the tangent plane" of such manifolds, using the ExpExp and LogLog maps of those manifolds. The representations provide "wavelet coefficients" which can be thresholded, quantized, and scaled in much the same way as traditional wavelet coefficients. Tasks such as compression, noise removal, contrast enhancement, and stochastic simulation are facilitated by this representation. The approach applies to general manifolds but is particularly suited to the manifolds we consider, i.e., Riemannian symmetric spaces, such as Sn−1S^{n-1}, SO(n)SO(n), G(n,k)G(n,k), where the ExpExp and LogLog maps are effectively computable. Applications to manifold-valued data sources of a geometric nature (motion, orientation, diffusion) seem particularly immediate. A software toolbox, SymmLab, can reproduce the results discussed in this paper

    A Multiscale Pyramid Transform for Graph Signals

    Get PDF
    Multiscale transforms designed to process analog and discrete-time signals and images cannot be directly applied to analyze high-dimensional data residing on the vertices of a weighted graph, as they do not capture the intrinsic geometric structure of the underlying graph data domain. In this paper, we adapt the Laplacian pyramid transform for signals on Euclidean domains so that it can be used to analyze high-dimensional data residing on the vertices of a weighted graph. Our approach is to study existing methods and develop new methods for the four fundamental operations of graph downsampling, graph reduction, and filtering and interpolation of signals on graphs. Equipped with appropriate notions of these operations, we leverage the basic multiscale constructs and intuitions from classical signal processing to generate a transform that yields both a multiresolution of graphs and an associated multiresolution of a graph signal on the underlying sequence of graphs.Comment: 16 pages, 13 figure

    The solution of multi-scale partial differential equations using wavelets

    Full text link
    Wavelets are a powerful new mathematical tool which offers the possibility to treat in a natural way quantities characterized by several length scales. In this article we will show how wavelets can be used to solve partial differential equations which exhibit widely varying length scales and which are therefore hardly accessible by other numerical methods. As a benchmark calculation we solve Poisson's equation for a 3-dimensional Uranium dimer. The length scales of the charge distribution vary by 4 orders of magnitude in this case. Using lifted interpolating wavelets the number of iterations is independent of the maximal resolution and the computational effort therefore scales strictly linearly with respect to the size of the system
    • …
    corecore