Wavelets are a powerful new mathematical tool which offers the possibility to
treat in a natural way quantities characterized by several length scales. In
this article we will show how wavelets can be used to solve partial
differential equations which exhibit widely varying length scales and which are
therefore hardly accessible by other numerical methods. As a benchmark
calculation we solve Poisson's equation for a 3-dimensional Uranium dimer. The
length scales of the charge distribution vary by 4 orders of magnitude in this
case. Using lifted interpolating wavelets the number of iterations is
independent of the maximal resolution and the computational effort therefore
scales strictly linearly with respect to the size of the system