922 research outputs found

    A chaotic spread spectrum system for underwater acoustic communication

    Get PDF
    The work is supported in part by NSFC (Grant no. 61172070), IRT of Shaanxi Province (2013KCT-04), EPSRC (Grant no.Ep/1032606/1).Peer reviewedPostprin

    Digital Signal Processing Research Program

    Get PDF
    Contains table of contents for Section 2, an introduction, reports on twenty-two research projects and a list of publications.Sanders, a Lockheed-Martin Corporation Contract BZ4962U.S. Army Research Laboratory Contract DAAL01-96-2-0001U.S. Navy - Office of Naval Research Grant N00014-93-1-0686National Science Foundation Grant MIP 95-02885U.S. Navy - Office of Naval Research Grant N00014-96-1-0930National Defense Science and Engineering FellowshipU.S. Air Force - Office of Scientific Research Grant F49620-96-1-0072U.S. Navy - Office of Naval Research Grant N00014-95-1-0362National Science Foundation Graduate Research FellowshipAT&T Bell Laboratories Graduate Research FellowshipU.S. Army Research Laboratory Contract DAAL01-96-2-0002National Science Foundation Graduate FellowshipU.S. Army Research Laboratory/Advanced Sensors Federated Lab Program Contract DAAL01-96-2-000

    Personal area technologies for internetworked services

    Get PDF

    Visible Light Communication (VLC)

    Get PDF
    Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC

    Performance Evaluation of Chaos Based IDMA Scheme Using Joint Turbo Equalization Over Frequency Selective Fading Channel

    Get PDF
    This paper proposed the analysis of a new chaos based interleave division multiple access (CB-IDMA) wireless communication system. It also proposed the use of joint turbo equalization to mitigate the effect of intersymbol interference (ISI) in deep faded frequency selective channel. In this study, the proposed CB-IDMA system used the chaotic Tent map for the design of a robust interleaver, which produces low correlation among the users and yields better bit error rate performance. The proposed structure combined the joint turbo equalization for the cancellation of ISI and multiple access interference (MAI), which was observed as the main impediment to successful IDMA communication over frequency selective multipath fading channel. Two types of frequency domain equalizers were considered for performance evaluation; zero forcing (ZF) and minimum mean square error (MMSE) equalizer. Simulation experiments were performed in MATLAB and the results demonstrated that the proposed CB-IDMA system with joint turbo equalization may be preferred in deep fading environment
    corecore