3,743 research outputs found

    Design and Performance Analysis for LDPC Coded Modulation in Multiuser MIMO Systems

    Get PDF
    The channel capacity can be greatly increased by using multiple transmit and receive antennas, which is usually called multi-input multi-output (MIMO) systems. Iterative processing has achieved near-capacity on a single-antenna Gaussian or Rayleigh fading channel. How to use the iterative technique to exploit the capacity potential in single-user and/or multiuser MIMO systems is of great interest. We propose a low-density parity-check (LDPC) coded modulation scheme in multiuser MIMO systems. The receiver can be regarded as a serially concatenated iterative detection and decoding scheme, where the LDPC decoder performs the role of outer decoder and the multiuser demapper does that of the inner decoder. For the proposed scheme, appropriate selection of a bit-to-symbol mapping is crucial to achieve a good performance, so we investigate and find the best mapping under various cases.Analytical bound serves as a useful tool to assess system performance. The search for powerful codes has motivated the introduction of efficient bounding techniques tailored to some ensembles of codes. We then investigate combinatorial union bounding techniques for fast fading multiuser MIMO systems. The union upper bound on maximum likelihood (ML) decoding error probability provides a prediction for the system performance, with which the simulated system performance can be compared. Closed-form expression for the union bound is obtained, which can be evaluated efficiently by using a polynomial expansion. In addition, the constrained channel capacity and the threshold obtained from extrinsic information transfer (EXIT) chart can also serve as performance measures. Based on the analysis for fast fading case, we generalize the union upper bound to the block fading case

    Two-tier channel estimation aided near-capacity MIMO transceivers relying on norm-based joint transmit and receive antenna selection

    No full text
    We propose a norm-based joint transmit and receive antenna selection (NBJTRAS) aided near-capacity multiple-input multiple-output (MIMO) system relying on the assistance of a novel two-tier channel estimation scheme. Specifically, a rough estimate of the full MIMO channel is first generated using a low-complexity, low-training-overhead minimum mean square error based channel estimator, which relies on reusing a modest number of radio frequency (RF) chains. NBJTRAS is then carried out based on this initial full MIMO channel estimate. The NBJTRAS aided MIMO system is capable of significantly outperforming conventional MIMO systems equipped with the same modest number of RF chains, while dispensing with the idealised simplifying assumption of having perfectly known channel state information (CSI). Moreover, the initial subset channel estimate associated with the selected subset MIMO channel matrix is then used for activating a powerful semi-blind joint channel estimation and turbo detector-decoder, in which the channel estimate is refined by a novel block-of-bits selection based soft-decision aided channel estimator (BBSB-SDACE) embedded in the iterative detection and decoding process. The joint channel estimation and turbo detection-decoding scheme operating with the aid of the proposed BBSB-SDACE channel estimator is capable of approaching the performance of the near-capacity maximumlikelihood (ML) turbo transceiver associated with perfect CSI. This is achieved without increasing the complexity of the ML turbo detection and decoding process

    Media-Based MIMO: A New Frontier in Wireless Communications

    Full text link
    The idea of Media-based Modulation (MBM), is based on embedding information in the variations of the transmission media (channel state). This is in contrast to legacy wireless systems where data is embedded in a Radio Frequency (RF) source prior to the transmit antenna. MBM offers several advantages vs. legacy systems, including "additivity of information over multiple receive antennas", and "inherent diversity over a static fading channel". MBM is particularly suitable for transmitting high data rates using a single transmit and multiple receive antennas (Single Input-Multiple Output Media-Based Modulation, or SIMO-MBM). However, complexity issues limit the amount of data that can be embedded in the channel state using a single transmit unit. To address this shortcoming, the current article introduces the idea of Layered Multiple Input-Multiple Output Media-Based Modulation (LMIMO-MBM). Relying on a layered structure, LMIMO-MBM can significantly reduce both hardware and algorithmic complexities, as well as the training overhead, vs. SIMO-MBM. Simulation results show excellent performance in terms of Symbol Error Rate (SER) vs. Signal-to-Noise Ratio (SNR). For example, a 4×164\times 16 LMIMO-MBM is capable of transmitting 3232 bits of information per (complex) channel-use, with SER 105 \simeq 10^{-5} at Eb/N03.5E_b/N_0\simeq -3.5dB (or SER 104 \simeq 10^{-4} at Eb/N0=4.5E_b/N_0=-4.5dB). This performance is achieved using a single transmission and without adding any redundancy for Forward-Error-Correction (FEC). This means, in addition to its excellent SER vs. energy/rate performance, MBM relaxes the need for complex FEC structures, and thereby minimizes the transmission delay. Overall, LMIMO-MBM provides a promising alternative to MIMO and Massive MIMO for the realization of 5G wireless networks.Comment: 26 pages, 11 figures, additional examples are given to further explain the idea of Media-Based Modulation. Capacity figure adde
    corecore