484,295 research outputs found

    Chebyshev semi-iteration in Preconditioning

    Get PDF
    It is widely believed that Krylov subspace iterative methods are better than Chebyshev semi-iterative methods. When the solution of a linear system with a symmetric and positive definite coefficient matrix is required then the Conjugate Gradient method will compute the optimal approximate solution from the appropriate Krylov subspace, that is, it will implicitly compute the optimal polynomial. Hence a semi-iterative method, which requires eigenvalue bounds and computes an explicit polynomial, must, for just a little less computational work, give an inferior result. In this manuscript we identify a specific situation in the context of preconditioning when the Chebyshev semi-iterative method is the method of choice since it has properties which make it superior to the Conjugate Gradient method

    Development of iterative techniques for the solution of unsteady compressible viscous flows

    Get PDF
    The development of efficient iterative solution methods for the numerical solution of two- and three-dimensional compressible Navier-Stokes equations is discussed. Iterative time marching methods have several advantages over classical multi-step explicit time marching schemes, and non-iterative implicit time marching schemes. Iterative schemes have better stability characteristics than non-iterative explicit and implicit schemes. In this work, another approach based on the classical conjugate gradient method, known as the Generalized Minimum Residual (GMRES) algorithm is investigated. The GMRES algorithm has been used in the past by a number of researchers for solving steady viscous and inviscid flow problems. Here, we investigate the suitability of this algorithm for solving the system of non-linear equations that arise in unsteady Navier-Stokes solvers at each time step

    Development of generalized block correction procedures for the solution of discretized Navier-Stokes equations

    Get PDF
    Effort is directed towards developing a solution method which combines advantages of both the iterative and the direct methods. It involves iterative solution on the fine grid, convergence of which is enhanced by a direct solution for correction quantities on a coarse grid. The proposed block correction procedure was applied to compute recirculating flow in a driven cavity

    Free Boundary Formulation for BVPs on a Semi-Infinite Interval and Non-Iterative Transformation Methods

    Full text link
    This paper is concerned with two examples on the application of the free boundary formulation to BVPs on a semi-infinite interval. In both cases we are able to provide the exact solution of both the BVP and its free boundary formulation. Therefore, these problems can be used as benchmarks for the numerical methods applied to BVPs on a semi-infinite interval and to free BVPs. Moreover, we emphasize how for two classes of free BVPs, we can define non-iterative initial value methods, whereas BVPs are usually solved iteratively. These non-iterative methods can be deduced within Lie's group invariance theory. Then, we show how to apply the non-iterative methods to the two introduced free boundary formulations in order to obtain meaningful numerical results. Finally, we indicate several problems from the literature where our non-iterative transformation methods can be applied.Comment: 30 pages, 7 figures, 4 table
    corecore