8 research outputs found

    A Numerical Method for Imaging of Biological Microstructures by VHF Waves

    Get PDF
    Imaging techniques give a fundamental support to medical diagnostics during the pathology discovery as well as for the characterization of bio-medical structures. The imaging methods involve electromagnetic waves in a frequency range that spans from some Hz to GHz and over. Most of these methods involve ionizing waves and scanning of a large human body area even if only a focused inspection is needed. In this paper, a numerical method to evaluate the shape of microstructures for application in the medical field, with a very low invasiveness for the human body, is proposed. In particular, the tooth’s root canal is considered. In fact, this is one of the hot topics in the endodontic procedures where rotary instruments are widely used. These instruments are subjected to sudden mechanical damage during the surgical process, due to cyclic fatigue directly related to the canal’s geometrical characteristics. In order to develop an improved endodontic procedure so that instrument breakage probability and canal milling precision are optimized, preliminary canal root reconstruction techniques have to be implemented. These techniques are usually based on invasive X-ray imaging. Thus, a minimally invasive, easy to use imaging technique that can be applied many times on the patient is of great interest. To this aim, a method based on a flexible thin-wire antenna radiating non ionizing VHF waves is proposed. By measuring the spatial magnetic field distribution in the neighboring area, it is possible to reconstruct the microstructure image by estimating the shape of the antenna against a sensor panel. The mathematical model is strictly non-linear and the inverse problem described above is solved numerically; first simulation results are presented in order to show the validity and the robustness of the proposed approach

    Geophysical Institute. Biennial report, 1993-1994

    Full text link

    NASA Tech Briefs, April 1997

    Get PDF
    Topics covered include: Video and Imaging; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports

    Six Decades of Flight Research: An Annotated Bibliography of Technical Publications of NASA Dryden Flight Research Center, 1946-2006

    Get PDF
    Titles, authors, report numbers, and abstracts are given for nearly 2900 unclassified and unrestricted technical reports and papers published from September 1946 to December 2006 by the NASA Dryden Flight Research Center and its predecessor organizations. These technical reports and papers describe and give the results of 60 years of flight research performed by the NACA and NASA, from the X-1 and other early X-airplanes, to the X-15, Space Shuttle, X-29 Forward Swept Wing, X-31, and X-43 aircraft. Some of the other research airplanes tested were the D-558, phase 1 and 2; M-2, HL-10 and X-24 lifting bodies; Digital Fly-By-Wire and Supercritical Wing F-8; XB-70; YF-12; AFTI F-111 TACT and MAW; F-15 HiDEC; F-18 High Alpha Research Vehicle, F-18 Systems Research Aircraft and the NASA Landing Systems Research aircraft. The citations of reports and papers are listed in chronological order, with author and aircraft indices. In addition, in the appendices, citations of 270 contractor reports, more than 200 UCLA Flight System Research Center reports, nearly 200 Tech Briefs, 30 Dryden Historical Publications, and over 30 videotapes are included

    Microgravity Science and Applications: Program Tasks and Bibliography for Fiscal Year 1996

    Get PDF
    NASA's Microgravity Science and Applications Division (MSAD) sponsors a program that expands the use of space as a laboratory for the study of important physical, chemical, and biochemical processes. The primary objective of the program is to broaden the value and capabilities of human presence in space by exploiting the unique characteristics of the space environment for research. However, since flight opportunities are rare and flight research development is expensive, a vigorous ground-based research program, from which only the best experiments evolve, is critical to the continuing strength of the program. The microgravity environment affords unique characteristics that allow the investigation of phenomena and processes that are difficult or impossible to study an Earth. The ability to control gravitational effects such as buoyancy driven convection, sedimentation, and hydrostatic pressures make it possible to isolate phenomena and make measurements that have significantly greater accuracy than can be achieved in normal gravity. Space flight gives scientists the opportunity to study the fundamental states of physical matter-solids, liquids and gasses-and the forces that affect those states. Because the orbital environment allows the treatment of gravity as a variable, research in microgravity leads to a greater fundamental understanding of the influence of gravity on the world around us. With appropriate emphasis, the results of space experiments lead to both knowledge and technological advances that have direct applications on Earth. Microgravity research also provides the practical knowledge essential to the development of future space systems. The Office of Life and Microgravity Sciences and Applications (OLMSA) is responsible for planning and executing research stimulated by the Agency's broad scientific goals. OLMSA's Microgravity Science and Applications Division (MSAD) is responsible for guiding and focusing a comprehensive program, and currently manages its research and development tasks through five major scientific areas: biotechnology, combustion science, fluid physics, fundamental physics, and materials science. FY 1996 was an important year for MSAD. NASA continued to build a solid research community for the coming space station era. During FY 1996, the NASA Microgravity Research Program continued investigations selected from the 1994 combustion science, fluid physics, and materials science NRAS. MSAD also released a NASA Research Announcement in microgravity biotechnology, with more than 130 proposals received in response. Selection of research for funding is expected in early 1997. The principal investigators chosen from these NRAs will form the core of the MSAD research program at the beginning of the space station era. The third United States Microgravity Payload (USMP-3) and the Life and Microgravity Spacelab (LMS) missions yielded a wealth of microgravity data in FY 1996. The USMP-3 mission included a fluids facility and three solidification furnaces, each designed to examine a different type of crystal growth

    1990-1995 Brock Campus News

    Get PDF
    A compilation of the administration newspaper, Brock Campus News, for the years 1990 through 1995. It had previously been titled The Blue Badger
    corecore