3,723 research outputs found

    Iterative learning control for constrained linear systems

    Get PDF
    This paper considers iterative learning control for linear systems with convex control input constraints. First, the constrained ILC problem is formulated in a novel successive projection framework. Then, based on this projection method, two algorithms are proposed to solve this constrained ILC problem. The results show that, when perfect tracking is possible, both algorithms can achieve perfect tracking. The two algorithms differ however in that one algorithm needs much less computation than the other. When perfect tracking is not possible, both algorithms can exhibit a form of practical convergence to a "best approximation". The effect of weighting matrices on the performance of the algorithms is also discussed and finally, numerical simulations are given to demonstrate the e®ectiveness of the proposed methods

    Hybrid iterative learning control of a flexible manipulator

    Get PDF
    This paper presents an investigation into the development of a hybrid control scheme with iterative learning for input tracking and end-point vibration suppression of a flexible manipulator system. The dynamic model of the system is derived using the finite element method. Initially, a collocated proportional-derivative (PD) controller using hub angle and hub velocity feedback is developed for control of rigid-body motion of the system. This is then extended to incorporate a non-collocated proportional-integral-derivative (PID) controller with iterative learning for control of vibration of the system. Simulation results of the response of the manipulator with the controllers are presented in the time and frequency domains. The performance of the hybrid iterative learning control scheme is assessed in terms of input tracking and level of vibration reduction in comparison to a conventionally designed PD-PID control scheme. The effectiveness of the control scheme in handling various payloads is also studied

    Multivariable norm optimal iterative learning control with auxiliary optimization

    No full text
    The paper describes a substantial extension of Norm Optimal Iterative Learning Control (NOILC) that permits tracking of a class of finite dimensional reference signals whilst simultaneously converging to the solution of a constrained quadratic optimization problem. The theory is presented in a general functional analytical framework using operators between chosen real Hilbert spaces. This is applied to solve problems in continuous time where tracking is only required at selected intermediate points of the time interval but, simultaneously, the solution is required to minimize a specified quadratic objective function of the input signals and chosen auxiliary (state) variables. Applications to the discrete time case, including the case of multi-rate sampling, are also summarized. The algorithms are motivated by practical need and provide a methodology for reducing undesirable effects such as payload spillage, vibration tendencies and actuator wear whilst maintaining the desired tracking accuracy necessary for task completion. Solutions in terms of NOILC methodologies involving both feedforward and feedback components offer the possibilities of greater robustness than purely feedforward actions. Robustness of the feedforward implementation is discussed and the work is illustrated by experimental results from a robotic manipulator

    A 2D systems approach to iterative learning control for discrete linear processes with zero Markov parameters

    No full text
    In this paper a new approach to iterative learning control for the practically relevant case of deterministic discrete linear plants with uniform rank greater than unity is developed. The analysis is undertaken in a 2D systems setting that, by using a strong form of stability for linear repetitive processes, allows simultaneous con-sideration of both trial-to-trial error convergence and along the trial performance, resulting in design algorithms that can be computed using Linear Matrix Inequalities (LMIs). Finally, the control laws are experimentally verified on a gantry robot that replicates a pick and place operation commonly found in a number of applications to which iterative learning control is applicable

    Robust gradient-based discrete-time iterative learning control algorithms

    Get PDF
    This paper considers the use of matrix models and the robustness of a gradient-based Iterative Learning Control (ILC) algorithm using both fixed learning gains and gains derived from parameter optimization. The philosophy of the paper is to ensure monotonic convergence with respect to the mean square value of the error time series. The paper provides a complete and rigorous analysis for the systematic use of matrix models in ILC. Matrix models make analysis clearer and provide necessary and sufficient conditions for robust monotonic convergence. They also permit the construction of sufficient frequency domain conditions for robust monotonic convergence on finite time intervals for both causal and non-causal controller dynamics. The results are compared with recent results for robust inverse-model based ILC algorithms and it is seen that the algorithm has the potential to improve robustness to high frequency modelling errors provided that resonances within the plant bandwidth have been suppressed by feedback or series compensation

    Foundations of Iterative Learning Control

    Full text link
    Iterative Learning Control (ILC) is a technique for adaptive feed-forward control of electro-mechanical plant that either performs programmed periodic behavior or rejects quasi-periodic disturbances. For example, ILC can suppress particle-beam RF-loading transients in RF cavities for acceleration. This paper, for the first time, explains the structural causes of ``bad learning transients'' for causal and noncausal learning in terms of their eigen-system properties. This paper underscores the fundamental importance of the linear weighted-sums of the column elements of the iteration matrix in determining convergence, and the relation to the convergence of sum of squares. This paper explains how to apply the z-transform convergence criteria to causal and noncausal learning. These criteria have an enormous advantage over the matrix formulation because the algorithm scales as N^2 (or smaller) versus N^3, where N is the length of the column vector containing the time series. Finally, the paper reminds readers that there are also wave-like (soliton) solutions of the ILC equations that may occur even when all convergence criteria are satisfied.Comment: 9 pages, 22 figure
    corecore