75 research outputs found

    Harnessing the Power of Sample Abundance: Theoretical Guarantees and Algorithms for Accelerated One-Bit Sensing

    Full text link
    One-bit quantization with time-varying sampling thresholds (also known as random dithering) has recently found significant utilization potential in statistical signal processing applications due to its relatively low power consumption and low implementation cost. In addition to such advantages, an attractive feature of one-bit analog-to-digital converters (ADCs) is their superior sampling rates as compared to their conventional multi-bit counterparts. This characteristic endows one-bit signal processing frameworks with what one may refer to as sample abundance. We show that sample abundance plays a pivotal role in many signal recovery and optimization problems that are formulated as (possibly non-convex) quadratic programs with linear feasibility constraints. Of particular interest to our work are low-rank matrix recovery and compressed sensing applications that take advantage of one-bit quantization. We demonstrate that the sample abundance paradigm allows for the transformation of such problems to merely linear feasibility problems by forming large-scale overdetermined linear systems -- thus removing the need for handling costly optimization constraints and objectives. To make the proposed computational cost savings achievable, we offer enhanced randomized Kaczmarz algorithms to solve these highly overdetermined feasibility problems and provide theoretical guarantees in terms of their convergence, sample size requirements, and overall performance. Several numerical results are presented to illustrate the effectiveness of the proposed methodologies.Comment: arXiv admin note: text overlap with arXiv:2301.0346

    An Asynchronous Parallel Approach to Sparse Recovery

    Full text link
    Asynchronous parallel computing and sparse recovery are two areas that have received recent interest. Asynchronous algorithms are often studied to solve optimization problems where the cost function takes the form βˆ‘i=1Mfi(x)\sum_{i=1}^M f_i(x), with a common assumption that each fif_i is sparse; that is, each fif_i acts only on a small number of components of x∈Rnx\in\mathbb{R}^n. Sparse recovery problems, such as compressed sensing, can be formulated as optimization problems, however, the cost functions fif_i are dense with respect to the components of xx, and instead the signal xx is assumed to be sparse, meaning that it has only ss non-zeros where sβ‰ͺns\ll n. Here we address how one may use an asynchronous parallel architecture when the cost functions fif_i are not sparse in xx, but rather the signal xx is sparse. We propose an asynchronous parallel approach to sparse recovery via a stochastic greedy algorithm, where multiple processors asynchronously update a vector in shared memory containing information on the estimated signal support. We include numerical simulations that illustrate the potential benefits of our proposed asynchronous method.Comment: 5 pages, 2 figure

    Topics in Compressed Sensing

    Get PDF
    Compressed sensing has a wide range of applications that include error correction, imaging, radar and many more. Given a sparse signal in a high dimensional space, one wishes to reconstruct that signal accurately and efficiently from a number of linear measurements much less than its actual dimension. Although in theory it is clear that this is possible, the difficulty lies in the construction of algorithms that perform the recovery efficiently, as well as determining which kind of linear measurements allow for the reconstruction. There have been two distinct major approaches to sparse recovery that each present different benefits and shortcomings. The first, L1-minimization methods such as Basis Pursuit, use a linear optimization problem to recover the signal. This method provides strong guarantees and stability, but relies on Linear Programming, whose methods do not yet have strong polynomially bounded runtimes. The second approach uses greedy methods that compute the support of the signal iteratively. These methods are usually much faster than Basis Pursuit, but until recently had not been able to provide the same guarantees. This gap between the two approaches was bridged when we developed and analyzed the greedy algorithm Regularized Orthogonal Matching Pursuit (ROMP). ROMP provides similar guarantees to Basis Pursuit as well as the speed of a greedy algorithm. Our more recent algorithm Compressive Sampling Matching Pursuit (CoSaMP) improves upon these guarantees, and is optimal in every important aspect

    Fast stochastic dual coordinate descent algorithms for linearly constrained convex optimization

    Full text link
    The problem of finding a solution to the linear system Ax=bAx = b with certain minimization properties arises in numerous scientific and engineering areas. In the era of big data, the stochastic optimization algorithms become increasingly significant due to their scalability for problems of unprecedented size. This paper focuses on the problem of minimizing a strongly convex function subject to linear constraints. We consider the dual formulation of this problem and adopt the stochastic coordinate descent to solve it. The proposed algorithmic framework, called fast stochastic dual coordinate descent, utilizes sampling matrices sampled from user-defined distributions to extract gradient information. Moreover, it employs Polyak's heavy ball momentum acceleration with adaptive parameters learned through iterations, overcoming the limitation of the heavy ball momentum method that it requires prior knowledge of certain parameters, such as the singular values of a matrix. With these extensions, the framework is able to recover many well-known methods in the context, including the randomized sparse Kaczmarz method, the randomized regularized Kaczmarz method, the linearized Bregman iteration, and a variant of the conjugate gradient (CG) method. We prove that, with strongly admissible objective function, the proposed method converges linearly in expectation. Numerical experiments are provided to confirm our results.Comment: arXiv admin note: text overlap with arXiv:2305.0548
    • …
    corecore