281 research outputs found

    Context-Aware Generative Adversarial Privacy

    Full text link
    Preserving the utility of published datasets while simultaneously providing provable privacy guarantees is a well-known challenge. On the one hand, context-free privacy solutions, such as differential privacy, provide strong privacy guarantees, but often lead to a significant reduction in utility. On the other hand, context-aware privacy solutions, such as information theoretic privacy, achieve an improved privacy-utility tradeoff, but assume that the data holder has access to dataset statistics. We circumvent these limitations by introducing a novel context-aware privacy framework called generative adversarial privacy (GAP). GAP leverages recent advancements in generative adversarial networks (GANs) to allow the data holder to learn privatization schemes from the dataset itself. Under GAP, learning the privacy mechanism is formulated as a constrained minimax game between two players: a privatizer that sanitizes the dataset in a way that limits the risk of inference attacks on the individuals' private variables, and an adversary that tries to infer the private variables from the sanitized dataset. To evaluate GAP's performance, we investigate two simple (yet canonical) statistical dataset models: (a) the binary data model, and (b) the binary Gaussian mixture model. For both models, we derive game-theoretically optimal minimax privacy mechanisms, and show that the privacy mechanisms learned from data (in a generative adversarial fashion) match the theoretically optimal ones. This demonstrates that our framework can be easily applied in practice, even in the absence of dataset statistics.Comment: Improved version of a paper accepted by Entropy Journal, Special Issue on Information Theory in Machine Learning and Data Scienc

    Federated Learning in Big Model Era: Domain-Specific Multimodal Large Models

    Full text link
    Multimodal data, which can comprehensively perceive and recognize the physical world, has become an essential path towards general artificial intelligence. However, multimodal large models trained on public datasets often underperform in specific industrial domains. This paper proposes a multimodal federated learning framework that enables multiple enterprises to utilize private domain data to collaboratively train large models for vertical domains, achieving intelligent services across scenarios. The authors discuss in-depth the strategic transformation of federated learning in terms of intelligence foundation and objectives in the era of big model, as well as the new challenges faced in heterogeneous data, model aggregation, performance and cost trade-off, data privacy, and incentive mechanism. The paper elaborates a case study of leading enterprises contributing multimodal data and expert knowledge to city safety operation management , including distributed deployment and efficient coordination of the federated learning platform, technical innovations on data quality improvement based on large model capabilities and efficient joint fine-tuning approaches. Preliminary experiments show that enterprises can enhance and accumulate intelligent capabilities through multimodal model federated learning, thereby jointly creating an smart city model that provides high-quality intelligent services covering energy infrastructure safety, residential community security, and urban operation management. The established federated learning cooperation ecosystem is expected to further aggregate industry, academia, and research resources, realize large models in multiple vertical domains, and promote the large-scale industrial application of artificial intelligence and cutting-edge research on multimodal federated learning

    Adversarial Purification for Data-Driven Power System Event Classifiers with Diffusion Models

    Full text link
    The global deployment of the phasor measurement units (PMUs) enables real-time monitoring of the power system, which has stimulated considerable research into machine learning-based models for event detection and classification. However, recent studies reveal that machine learning-based methods are vulnerable to adversarial attacks, which can fool the event classifiers by adding small perturbations to the raw PMU data. To mitigate the threats posed by adversarial attacks, research on defense strategies is urgently needed. This paper proposes an effective adversarial purification method based on the diffusion model to counter adversarial attacks on the machine learning-based power system event classifier. The proposed method includes two steps: injecting noise into the PMU data; and utilizing a pre-trained neural network to eliminate the added noise while simultaneously removing perturbations introduced by the adversarial attacks. The proposed adversarial purification method significantly increases the accuracy of the event classifier under adversarial attacks while satisfying the requirements of real-time operations. In addition, the theoretical analysis reveals that the proposed diffusion model-based adversarial purification method decreases the distance between the original and compromised PMU data, which reduces the impacts of adversarial attacks. The empirical results on a large-scale real-world PMU dataset validate the effectiveness and computational efficiency of the proposed adversarial purification method

    Privacy Preserving Data Publishing

    Get PDF
    Recent years have witnessed increasing interest among researchers in protecting individual privacy in the big data era, involving social media, genomics, and Internet of Things. Recent studies have revealed numerous privacy threats and privacy protection methodologies, that vary across a broad range of applications. To date, however, there exists no powerful methodologies in addressing challenges from: high-dimension data, high-correlation data and powerful attackers. In this dissertation, two critical problems will be investigated: the prospects and some challenges for elucidating the attack capabilities of attackers in mining individuals’ private information; and methodologies that can be used to protect against such inference attacks, while guaranteeing significant data utility. First, this dissertation has proposed a series of works regarding inference attacks laying emphasis on protecting against powerful adversaries with auxiliary information. In the context of genomic data, data dimensions and computation feasibility is highly challenging in conducting data analysis. This dissertation proved that the proposed attack can effectively infer the values of the unknown SNPs and traits in linear complexity, which dramatically improve the computation cost compared with traditional methods with exponential computation cost. Second, putting differential privacy guarantee into high-dimension and high-correlation data remains a challenging problem, due to high-sensitivity, output scalability and signal-to-noise ratio. Consider there are tens-of-millions of genomes in a human DNA, it is infeasible for traditional methods to introduce noise to sanitize genomic data. This dissertation has proposed a series of works and demonstrated that the proposed differentially private method satisfies differential privacy; moreover, data utility is improved compared with the states of the arts by largely lowering data sensitivity. Third, putting privacy guarantee into social data publishing remains a challenging problem, due to tradeoff requirements between data privacy and utility. This dissertation has proposed a series of works and demonstrated that the proposed methods can effectively realize privacy-utility tradeoff in data publishing. Finally, two future research topics are proposed. The first topic is about Privacy Preserving Data Collection and Processing for Internet of Things. The second topic is to study Privacy Preserving Big Data Aggregation. They are motivated by the newly proposed data mining, artificial intelligence and cybersecurity methods

    DataPerf: Benchmarks for Data-Centric AI Development

    Full text link
    Machine learning research has long focused on models rather than datasets, and prominent datasets are used for common ML tasks without regard to the breadth, difficulty, and faithfulness of the underlying problems. Neglecting the fundamental importance of data has given rise to inaccuracy, bias, and fragility in real-world applications, and research is hindered by saturation across existing dataset benchmarks. In response, we present DataPerf, a community-led benchmark suite for evaluating ML datasets and data-centric algorithms. We aim to foster innovation in data-centric AI through competition, comparability, and reproducibility. We enable the ML community to iterate on datasets, instead of just architectures, and we provide an open, online platform with multiple rounds of challenges to support this iterative development. The first iteration of DataPerf contains five benchmarks covering a wide spectrum of data-centric techniques, tasks, and modalities in vision, speech, acquisition, debugging, and diffusion prompting, and we support hosting new contributed benchmarks from the community. The benchmarks, online evaluation platform, and baseline implementations are open source, and the MLCommons Association will maintain DataPerf to ensure long-term benefits to academia and industry.Comment: NeurIPS 2023 Datasets and Benchmarks Trac
    • …
    corecore