7,350 research outputs found

    RandProx: Primal-Dual Optimization Algorithms with Randomized Proximal Updates

    Full text link
    Proximal splitting algorithms are well suited to solving large-scale nonsmooth optimization problems, in particular those arising in machine learning. We propose a new primal-dual algorithm, in which the dual update is randomized; equivalently, the proximity operator of one of the function in the problem is replaced by a stochastic oracle. For instance, some randomly chosen dual variables, instead of all, are updated at each iteration. Or, the proximity operator of a function is called with some small probability only. A nonsmooth variance-reduction technique is implemented so that the algorithm finds an exact minimizer of the general problem involving smooth and nonsmooth functions, possibly composed with linear operators. We derive linear convergence results in presence of strong convexity; these results are new even in the deterministic case, when our algorithms reverts to the recently proposed Primal-Dual Davis-Yin algorithm. Some randomized algorithms of the literature are also recovered as particular cases (e.g., Point-SAGA). But our randomization technique is general and encompasses many unbiased mechanisms beyond sampling and probabilistic updates, including compression. Since the convergence speed depends on the slowest among the primal and dual contraction mechanisms, the iteration complexity might remain the same when randomness is used. On the other hand, the computation complexity can be significantly reduced. Overall, randomness helps getting faster algorithms. This has long been known for stochastic-gradient-type algorithms, and our work shows that this fully applies in the more general primal-dual setting as well

    Reflection methods for user-friendly submodular optimization

    Get PDF
    Recently, it has become evident that submodularity naturally captures widely occurring concepts in machine learning, signal processing and computer vision. Consequently, there is need for efficient optimization procedures for submodular functions, especially for minimization problems. While general submodular minimization is challenging, we propose a new method that exploits existing decomposability of submodular functions. In contrast to previous approaches, our method is neither approximate, nor impractical, nor does it need any cumbersome parameter tuning. Moreover, it is easy to implement and parallelize. A key component of our method is a formulation of the discrete submodular minimization problem as a continuous best approximation problem that is solved through a sequence of reflections, and its solution can be easily thresholded to obtain an optimal discrete solution. This method solves both the continuous and discrete formulations of the problem, and therefore has applications in learning, inference, and reconstruction. In our experiments, we illustrate the benefits of our method on two image segmentation tasks.Comment: Neural Information Processing Systems (NIPS), \'Etats-Unis (2013
    • …
    corecore