292 research outputs found

    Time-Dependent Tourist Tour Planning with Adjustable Profits

    Get PDF
    Planning a tourist trip in a foreign city can be a complex undertaking: when selecting the attractions and choosing visit order and visit durations, opening hours as well as the public transit timetable need to be considered. Additionally, when planning trips for multiple days, it is desirable to avoid redundancy. Since the attractiveness of activities such as shopping or sightseeing depends on personal preferences, there is no one-size-fits-all solution to this problem. We propose several realistic extensions to the Time-Dependent Team Orienteering Problem with Time Windows (TDTOPTW) which are relevant in practice and present the first MILP representation of it. Furthermore, we propose a problem-specific preprocessing step which enables fast heuristic (iterated local search) and exact (mixed-integer linear programming) personalized trip-planning for tourists. Experimental results for the city of Berlin show that the approach is feasible in practice

    An evolutionary algorithm for online, resource constrained, multi-vehicle sensing mission planning

    Full text link
    Mobile robotic platforms are an indispensable tool for various scientific and industrial applications. Robots are used to undertake missions whose execution is constrained by various factors, such as the allocated time or their remaining energy. Existing solutions for resource constrained multi-robot sensing mission planning provide optimal plans at a prohibitive computational complexity for online application [1],[2],[3]. A heuristic approach exists for an online, resource constrained sensing mission planning for a single vehicle [4]. This work proposes a Genetic Algorithm (GA) based heuristic for the Correlated Team Orienteering Problem (CTOP) that is used for planning sensing and monitoring missions for robotic teams that operate under resource constraints. The heuristic is compared against optimal Mixed Integer Quadratic Programming (MIQP) solutions. Results show that the quality of the heuristic solution is at the worst case equal to the 5% optimal solution. The heuristic solution proves to be at least 300 times more time efficient in the worst tested case. The GA heuristic execution required in the worst case less than a second making it suitable for online execution.Comment: 8 pages, 5 figures, accepted for publication in Robotics and Automation Letters (RA-L

    A multi-criteria decision support system for a routing problem in waste collection

    Get PDF
    Autor proofThis work presents a decision support system for route planning of vehicles performing waste collection for recycling. We propose a prototype system that includes three modules: route optimization, waste generation prediction, and multiple-criteria decision analysis (MCDA). In this work we focus on the application of MCDA in route optimization. The structure and functioning of the DSS is also presented. We modelled the waste collection procedure as a routing problem, more specifically as a team orienteering problem with capacity constraints and time windows. To solve the route optimization problem we developed a cellular genetic algorithm. For the MCDA module, we employed three methods: SMART, ValueFn and Analytic Hierarchy Process (AHP). The decision support system was tested with real-world data from a waste management company that collects recyclables, and the capabilities of the system are discussed.FCT Fundação para a Ciência e Tecnologia, Project Scope: PEst-OE/EEI/UI0319/2

    The stochastic team orienteering problem with position-dependent rewards

    Get PDF
    In this paper, we analyze both the deterministic and stochastic versions of a team orienteering problem (TOP) in which rewards from customers are dynamic. The typical goal of the TOP is to select a set of customers to visit in order to maximize the total reward gathered by a fixed fleet of vehicles. To better reflect some real-life scenarios, we consider a version in which rewards associated with each customer might depend upon the order in which the customer is visited within a route, bonusing the first clients and penalizing the last ones. In addition, travel times are modeled as random variables. Two mixed-integer programming models are proposed for the deterministic version, which is then solved using a well-known commercial solver. Furthermore, a biased-randomized iterated local search algorithm is employed to solve this deterministic version. Overall, the proposed metaheuristic algorithm shows an outstanding performance when compared with the optimal or near-optimal solutions provided by the commercial solver, both in terms of solution quality as well as in computational times. Then, the metaheuristic algorithm is extended into a full simheuristic in order to solve the stochastic version of the problem. A series of numerical experiments allows us to show that the solutions provided by the simheuristic outperform the near-optimal solutions obtained for the deterministic version of the problem when the latter are used in a scenario under conditions of uncertainty. In addition, the solutions provided by our simheuristic algorithm for the stochastic version of the problem offer a higher reliability level than the ones obtained with the commercial solver.Peer ReviewedPostprint (published version

    Orienteering Problem: A survey of recent variants, solution approaches and applications

    Get PDF
    National Research Foundation (NRF) Singapore under International Research Centres in Singapore Funding Initiativ
    corecore