630 research outputs found

    Attractors of directed graph IFSs that are not standard IFS attractors and their Hausdorff measure

    Get PDF
    For directed graph iterated function systems (IFSs) defined on R, we prove that a class of 2-vertex directed graph IFSs have attractors that cannot be the attractors of standard (1-vertex directed graph) IFSs, with or without separation conditions. We also calculate their exact Hausdorff measure. Thus we are able to identify a new class of attractors for which the exact Hausdorff measure is known

    Entropy computing via integration over fractal measures

    Full text link
    We discuss the properties of invariant measures corresponding to iterated function systems (IFSs) with place-dependent probabilities and compute their Renyi entropies, generalized dimensions, and multifractal spectra. It is shown that with certain dynamical systems one can associate the corresponding IFSs in such a way that their generalized entropies are equal. This provides a new method of computing entropy for some classical and quantum dynamical systems. Numerical techniques are based on integration over the fractal measures.Comment: 14 pages in Latex, Revtex + 4 figures in .ps attached (revised version, new title, several changes, to appear in CHAOS

    Numerics and Fractals

    Full text link
    Local iterated function systems are an important generalisation of the standard (global) iterated function systems (IFSs). For a particular class of mappings, their fixed points are the graphs of local fractal functions and these functions themselves are known to be the fixed points of an associated Read-Bajactarevi\'c operator. This paper establishes existence and properties of local fractal functions and discusses how they are computed. In particular, it is shown that piecewise polynomials are a special case of local fractal functions. Finally, we develop a method to compute the components of a local IFS from data or (partial differential) equations.Comment: version 2: minor updates and section 6.1 rewritten, arXiv admin note: substantial text overlap with arXiv:1309.0243. text overlap with arXiv:1309.024

    Bilinear Fractal Interpolation and Box Dimension

    Full text link
    In the context of general iterated function systems (IFSs), we introduce bilinear fractal interpolants as the fixed points of certain Read-Bajraktarevi\'{c} operators. By exhibiting a generalized "taxi-cab" metric, we show that the graph of a bilinear fractal interpolant is the attractor of an underlying contractive bilinear IFS. We present an explicit formula for the box-counting dimension of the graph of a bilinear fractal interpolant in the case of equally spaced data points
    corecore