630 research outputs found
Attractors of directed graph IFSs that are not standard IFS attractors and their Hausdorff measure
For directed graph iterated function systems (IFSs) defined on R, we prove
that a class of 2-vertex directed graph IFSs have attractors that cannot be the
attractors of standard (1-vertex directed graph) IFSs, with or without
separation conditions. We also calculate their exact Hausdorff measure. Thus we
are able to identify a new class of attractors for which the exact Hausdorff
measure is known
Entropy computing via integration over fractal measures
We discuss the properties of invariant measures corresponding to iterated
function systems (IFSs) with place-dependent probabilities and compute their
Renyi entropies, generalized dimensions, and multifractal spectra. It is shown
that with certain dynamical systems one can associate the corresponding IFSs in
such a way that their generalized entropies are equal. This provides a new
method of computing entropy for some classical and quantum dynamical systems.
Numerical techniques are based on integration over the fractal measures.Comment: 14 pages in Latex, Revtex + 4 figures in .ps attached (revised
version, new title, several changes, to appear in CHAOS
Numerics and Fractals
Local iterated function systems are an important generalisation of the
standard (global) iterated function systems (IFSs). For a particular class of
mappings, their fixed points are the graphs of local fractal functions and
these functions themselves are known to be the fixed points of an associated
Read-Bajactarevi\'c operator. This paper establishes existence and properties
of local fractal functions and discusses how they are computed. In particular,
it is shown that piecewise polynomials are a special case of local fractal
functions. Finally, we develop a method to compute the components of a local
IFS from data or (partial differential) equations.Comment: version 2: minor updates and section 6.1 rewritten, arXiv admin note:
substantial text overlap with arXiv:1309.0243. text overlap with
arXiv:1309.024
Bilinear Fractal Interpolation and Box Dimension
In the context of general iterated function systems (IFSs), we introduce
bilinear fractal interpolants as the fixed points of certain
Read-Bajraktarevi\'{c} operators. By exhibiting a generalized "taxi-cab"
metric, we show that the graph of a bilinear fractal interpolant is the
attractor of an underlying contractive bilinear IFS. We present an explicit
formula for the box-counting dimension of the graph of a bilinear fractal
interpolant in the case of equally spaced data points
- …
