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Abstract

For directed graph iterated function systems (IFSs) defined on R, we prove
that a class of 2-vertex directed graph IFSs have attractors that cannot be
the attractors of standard (1-vertex directed graph) IFSs, with or without
separation conditions. We also calculate their exact Hausdorff measure. Thus
we are able to identify a new class of attractors for which the exact Hausdorff
measure is known.

1 Introduction

The work of this paper was originally motivated by asking the question, “Do we
really get anything new with a directed graph IFS as opposed to a standard IFS?”
A standard IFS can always be represented as a 1-vertex directed graph IFS so the
question is really, “Do we get anything new with a directed graph IFS with more than
1 vertex as opposed to a 1-vertex directed graph IFS?”. By restricting the systems
under consideration to those defined on R, we answer this question in the affirmative
by proving that a class of 2-vertex directed graph IFSs have attractors that cannot be
the attractors of standard (1-vertex directed graph) IFSs, with or without separation
conditions, overlapping or otherwise. We are also able to calculate the Hausdorff
measure of these attractors and so we extend the class of attractors for which the
exact Hausdorff measure is known.

In what follows we will often write k-vertex IFS as a shortening of k-vertex
directed graph IFS.

We start, in Section 3 by proving a general density result, Corollary 3.6, for
directed graph IFSs defined on Rn for which the open set condition holds. In Section
4, Theorem 4.6, we give sufficient conditions for the calculation of the Hausdorff
measure of both of the attractors of a class of 2-vertex IFSs defined on R. This
adds to the work of Ayer and Strichartz [1] and Marion [11]. Then in Section 5
we define the set of gap lengths of an attractor of any directed graph IFS defined
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on R for which the convex strong separation condition (CSSC) holds. In Section
6, by using sets of gap lengths to distinguish between attractors, we are able to
show that a large family of directed graph IFSs, with any number of vertices, have
attractors which are not attractors of standard (1-vertex) IFSs for which the CSSC
holds, see Corollaries 6.2, 6.4 and Theorem 6.3. Finally in Section 7 we combine
the results of Sections 4 and 6 to prove, in Theorems 7.4 and 7.5, the existence of a
class of 2-vertex IFSs that have attractors that cannot be the attractors of standard
(1-vertex) IFSs, with or without separation conditions.

The attractors of these 2-vertex IFSs are of interest not only because we are
able to compute their Hausdorff measure, but also because they give us information
about properties not shared by 1-vertex IFSs. Also, because they are the attractors
of such simple 2-vertex IFSs, it seems likely that most directed graph IFSs produce
genuinely new fractals, with many 3-vertex IFSs having attractors that cannot be
the attractors of 1 or 2-vertex IFSs and so on.

A number of proofs involve checks that are routine or repetitive and so in these
situations only a sketch or sample cases may be given, however full details of all
proofs may be found in the thesis [3].

The first author acknowledges support from an EPSRC Doctoral Training Grant
whilst this work was being undertaken.

2 Notation and background theory

A directed graph,
(
V,E∗, i, t

)
, consists of the set of all vertices V and the set of all

finite (directed) paths E∗, together with the initial and terminal vertex functions
i : E∗ → V and t : E∗ → V . E1 denotes the set of all (directed) edges in the
graph, that is the set of all paths of length one, with E1 ⊂ E∗. V and E1 are always
assumed to be finite sets. We write Ek for the set of all paths of length k, Ek

u for
the set of all paths of length k starting at the vertex u, Ek

uv for the set of all paths
of length k starting at the vertex u and finishing at v and so on. The initial and
terminal vertex functions are defined as follows. Let e ∈ E∗ be any finite path, then
we may write e = e1 · · · ek for some edges ei ∈ E1, 1 6 i 6 k. The initial vertex of
e is the initial vertex of its first edge, so i(e) = i(e1) and similarly for the terminal
vertex t(e) = t(ek).

We will often use a notation of the form (Ac)c∈B and (A)c∈B, when B is a finite
set of n elements, as this is just a convenient way of writing down ordered n-tuples.
That is, if B is ordered as B = (b1, b2, . . . , bn), then (Ac)c∈B and (A)c∈B are the
ordered n-tuples (Ac)c∈B = (Ab1 , Ab2 , . . . , Abn) and (A)c∈B = (A,A, . . . , A).

We use the notation
(
V,E∗, i, t, r, ((Cv, dv))v∈V , (Se)e∈E1

)
to indicate a directed

graph IFS and
(
V,E∗, i, t, r, p, ((Cv, dv))v∈V , (Se)e∈E1

)
for a directed graph IFS with

probabilities.
(
V,E∗, i, t

)
is the directed graph of any such IFS and we always assume

the directed graph is strongly connected, so there is at least one path connecting any
two vertices. We also assume that each vertex in the directed graph has at least
two edges leaving it, this is to avoid self-similar sets that consist of just single point
sets, and attractors that are just scalar copies of those at other vertices, see [6].
The functions r : E∗ → (0, 1) and p : E∗ → (0, 1) assign contraction ratios and
probabilities to the finite paths in the graph. To each vertex v ∈ V , is associated
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a complete metric space (Cv, dv) and to each directed edge e ∈ E1 is assigned a
contraction Se : Ct(e) → Ci(e) which has the contraction ratio given by the function
r(e) = re. We follow the convention already established in the literature, see [5] or
[6], that Se maps in the opposite direction to the direction of the edge it is associated
with in the graph.

The probability function p : E∗ → (0, 1), where for an edge e ∈ E1 we write
p(e) = pe, is such that

∑
e∈E1

u
pe = 1, for any vertex u ∈ V . That is the probability

weights across all the edges leaving a vertex always sum to one. For a path e =
e1e2 · · · ek ∈ E∗ we define p(e) = pe = pe1pe2 · · · pek . Similarly for the contraction
ratio function r : E∗ → (0, 1), the contraction ratio along a path e = e1e2 · · · ek ∈ E∗
is defined as r(e) = re = re1re2 · · · rek . The ratio re is the ratio for the contraction
Se : Ct(e) → Ci(e) along the path e, where Se = Se1 ◦ Se2 ◦ · · · ◦ Sek .

In this paper we are only going to be concerned with directed graph IFSs de-
fined on n-dimensional Euclidean space, with ((Cv, dv))v∈V = ((Rn, | |))v∈V , and
where (Se)e∈E1 are contracting similarities and not just contractions. For any such
IFS,

(
V,E∗, i, t, r, ((Rn, | |))v∈V , (Se)e∈E1

)
, there exists a unique list of non-empty

compact sets (Fu)u∈V satisfying

(Fu)u∈V =

( ⋃
e∈E1

u

Se(Ft(e))

)
u∈V

, (2.1)

see Theorem 4.35, [5]. For the 1-vertex case see Theorem 9.1, [8].
We use the notation #V for the number of vertices in the set V , so (Rn)#V is

the #V -fold Cartesian product of Rn. Also we write K(Rn) for the set of all non-
empty compact subsets of Rn and (K(Rn))#V is the #V -fold Cartesian product with
(Fu)u∈V ∈ (K(Rn))#V .

For an IFS with probabilities,
(
V,E∗, i, t, r, p, ((Rn, | |))v∈V , (Se)e∈E1

)
, there ex-

ists a unique list of Borel probability measures, (µu)u∈V , such that

(µu(Au))u∈V =

( ∑
e∈E1

u

peµt(e)
(
S−1e (Au)

) )
u∈V

, (2.2)

for all Borel sets (Au)u∈V ⊂ (Rn)#V , with (supp(µu))u∈V = (Fu)u∈V , see Proposition
3, [14]. For the 1-vertex case see Theorem 2.8, [7].

The non-empty compact sets (Fu)u∈V of Equation (2.1) are often referred to
as the list of attractors or self-similar sets of the IFS and the Borel probability
measures, (µu)u∈V , of Equation (2.2), as the self-similar measures.

The open set condition (OSC) is satisfied if and only if there exist non-empty
bounded open sets (Uu)u∈V ⊂ (Rn)#V , with for each u ∈ V , Se(Ut(e)) ⊂ Uu for all
e ∈ E1

u and Se(Ut(e)) ∩ Sf (Ut(f)) = ∅ for all e, f ∈ E1
u, with e 6= f . See [5], [8] or

[10].
For a set A ⊂ Rn we use the notation C(A) for the convex hull of A, and A◦ for

the interior of A.
The convex strong separation condition (CSSC) is satisfied if and only if for each

u ∈ V , Se(C(Ft(e))) ∩ Sf (C(Ft(f))) = ∅ for all e, f ∈ E1
u, with e 6= f .

If the CSSC holds then the OSC is satisfied by the convex open sets (C(Fu)
◦)u∈V ,

provided C(Fu)
◦ 6= ∅ for each u ∈ V . If however C(Fu)

◦ = ∅ for some u ∈ V then
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we may always reduce the dimension n, of the parent space Rn, in which the IFS is
constructed.

The next theorem gives the dimension of the self-similar sets provided the OSC
holds, see Theorem 3, [12] and for the 1-vertex case see Theorem 9.3, [8]. For a set
A ⊂ Rn, we use the usual notation Hs(A) for the s-dimensional Hausdorff measure,
dimHA for the Hausdorff dimension and dimBA for the box-counting dimension.

Theorem 2.1. Let
(
V,E∗, i, t, r, ((Rn, | |))v∈V , (Se)e∈E1

)
be a directed graph IFS

and (Fu)u∈V the unique list of attractors. Let m = #V and let A(t) denote the
m×m matrix whose uvth entry is

Auv(t) =
∑
e∈E1

uv

rte.

Let ρ (A(t)) be the spectral radius of A(t), and let s be the unique non-negative real
number that is the solution of ρ (A(t)) = 1.

If the OSC is satisfied then, for each u ∈ V , s = dimH Fu = dimB Fu and
0 < Hs (Fu) < +∞.

3 A density result

In this section we consider an IFS
(
V,E∗, i, t, r, p, ((Rn, | |))v∈V , (Se)e∈E1

)
, which

satisfies the OSC, so the conclusions of Theorem 2.1 all hold for the list of attractors
(Fu)u∈V . Our aim is to prove the density result of Corollary 3.6. The directed graph
is strongly connected so the non-negative matrix A(s) is irreducible. By the Perron-
Frobenius Theorem, see [13], we take h = (hv)

T
v∈V to be the positive eigenvector,

which is unique up to a scaling factor, such that A(s)h = ρ (A(s)) h = h.
We explicitly define the probability function p : E∗ → (0, 1), for each path

e ∈ E∗, as pe = h−1i(e)r
s
eht(e). Since

∑
e∈E1

u
pe =

∑
e∈E1

u
h−1u rseht(e) = h−1u (A(s)h)u =

h−1u hu = 1, at each vertex u ∈ V , this defines a valid probability function for the
graph, see Section 2.

For the unique list of self-similar measures (µu)u∈V , Equation (2.2) is now

(µu(Au))u∈V =

( ∑
e∈E1

u

h−1u rseht(e)µt(e)(S
−1
e (Au))

)
u∈V

, (3.1)

for all Borel sets (Au)u∈V ⊂ (Rn)#V .
Let v and w be two real n-dimensional (column) vectors, then v 6 w if and

only if vi 6 wi for all i, 1 6 i 6 n, and similarly for v < w.

Lemma 3.1. Let M be a non-negative irreducible n× n matrix with spectral radius
ρ(M) = 1. Suppose v = (v1, v2, . . . , vn)T is a positive vector such that 0 < v 6 Mv,
then v = Mv.

Proof. This follows from standard Perron-Frobenius theory, see [13].

Lemma 3.2. (Hs(Fv))
T
v∈V is the unique (up to scaling) positive eigenvector of the

matrix A(s), that is
A(s)(Hs(Fv))

T
v∈V = (Hs(Fv))

T
v∈V .
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Proof. Hs(Fu) 6
∑

e∈E1
u
Hs(Se(Ft(e))) =

∑
e∈E1

u
rseHs(Ft(e)) =

(
A(s)(Hs(Fv))

T
v∈V
)
u
,

so (Hs(Fv))
T
v∈V is a positive vector for which 0 < (Hs(Fv))

T
v∈V 6 A(s)(Hs(Fv))

T
v∈V .

The matrix A(s) is non-negative and irreducible with spectral radius ρ(A(s)) = 1.
Applying Lemma 3.1 completes the proof.

Given Lemma 3.2 we put h = (hv)
T
v∈V = (Hs(Fv))

T
v∈V to denote the eigenvec-

tor of A(s), using any of these notations as appropriate from now on. The next
lemma states that the self-similar measures of Equation (3.1) are in fact restricted
normalised Hausdorff measures.

Lemma 3.3. For each u ∈ V ,

µu(A) =
Hs(Fu ∩ A)

Hs(Fu)
= h−1u Hs(Fu ∩ A),

for all Borel sets A ⊂ Rn.

Proof. This follows by a routine verification of Equation (3.1) for the list of restricted
normalised Hausdorff measures (h−1u Hs(Fu ∩Au))u∈V , where (Au)u∈V ⊂ (Rn)#V are
any Borel sets. See Lemma 3.2.3 [3] or [14] for details.

The notion of an s-straight set provides a useful intermediate step in the argu-
ment that follows, see [4]. A set B ⊂ Rn is s-straight if

Hs
∞(B) = Hs(B) < +∞.

Here Hs
∞(B) = inf {

∑∞
i=1 |Ui|

s : {Ui} is a cover of B} is the Hausdorff s-content
where there is no restriction on the diameters of the covering sets.

Lemma 3.4. If B ⊂ Rn is s-straight then Hs(A) 6 |A|s, for all Hs-measurable
subsets A ⊂ B.

Proof. For a contradiction we assume there is an Hs-measurable subset A ⊂ B such
that 0 < |A|s < Hs(A)− ε, for some ε > 0. We may find a cover {Ui} of B \A with∑∞

i=1 |Ui|
s 6 Hs(B \ A) + ε

2
. It follows that B ⊂ A

⋃
(
⋃∞
i=1 Ui), and so Hs

∞(B) 6
|A|s +

∑∞
i=1 |Ui|

s 6 |A|s +Hs(B \A) + ε
2
< Hs(A)− ε+Hs(B \A) + ε

2
= Hs(B)− ε

2
.

This implies Hs
∞(B) 6= Hs(B) which is a contradiction.

We remind the reader that in this section (Fu)u∈V is the unique list of attractors
of a directed graph IFS,

(
V,E∗, i, t, r, ((Rn, | |))v∈V , (Se)e∈E1

)
, for which the OSC

holds.

Lemma 3.5. Fu is s-straight for all u ∈ V .

Proof. For a contradiction assume there exists u ∈ V with 0 6 Hs
∞(Fu) < Hs(Fu).

Consider a vertex v ∈ V , v 6= u. As the graph is strongly connected we can
always find a path e from the vertex v to u, and suppose such a path has length
m, then Fv =

⋃
e∈Em

v
Se(Ft(e)). This implies Hs

∞(Fv) 6
∑

e∈Em
v
Hs
∞(Se(Ft(e))) =∑

e∈Em
v
rseHs

∞(Ft(e)) <
∑

e∈Em
v
rseHs(Ft(e)), where the strict inequality follows by our
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initial assumption, as t(e) = u for at least one path e ∈ Em
v . Applying Lemma 3.2

gives

Hs
∞(Fv) <

∑
e∈Em

v

rseHs(Ft(e)) =
(
A(s)m(Hs(Fw))Tw∈V

)
v

= Hs(Fv).

This argument may be repeated for any vertex, so 0 6 Hs
∞(Fv) < Hs(Fv), for all

v ∈ V .
Let hmax = max {hv : v ∈ V } and let ε > 0 be given by

ε = min

{
hmax

2
, min

{
Hs(Fv)−Hs

∞(Fv)

2
: v ∈ V

} }
. (3.2)

For each v ∈ V , we may choose some cover {Uv,i} of Fv, with no diameter restric-
tion, such that

∑∞
i=1 |Uv,i|

s < Hs
∞(Fv) + ε 6 Hs(Fv)− ε. For a given δ > 0, we may

choose k ∈ N large enough so that Fu =
⋃

e∈Ek
u
Se(Ft(e)) ⊂

⋃
e∈Ek

u
Se

(⋃∞
i=1 Ut(e),i

)
=⋃

e∈Ek
u

⋃∞
i=1 Se(Ut(e),i) where the last term is a δ-cover of Fu. By Lemma 3.2,∑

e∈Ek
u
h−1u rseht(e) = h−1u

(
A(s)kh

)
u

= 1, so
∑

e∈Ek
u
rseHs(Ft(e)) =

∑
e∈Ek

u
rseht(e) = hu

and
∑

e∈Ek
u
rse >

hu
hmax

.
These results imply

Hs
δ(Fu) 6

∑
e∈Ek

u

∞∑
i=1

∣∣Se(Ut(e),i)
∣∣s < ∑

e∈Ek
u

rse
(
Hs(Ft(e))− ε

)
6 hu

(
1− ε

hmax

)
.

From the choice of ε in (3.2), 0 < ε 6 hmax

2
, which ensures 1

2
6
(
1 − ε

hmax

)
< 1 and

as this argument holds for any δ we may conclude that Hs(Fu) 6 hu
(
1 − ε

hmax

)
<

hu = Hs(Fu), which is the required contradiction.

Corollary 3.6. (a) Hs(A) 6 |A|s for all Hs-measurable subsets A ⊂ Fu,

(b) sup

{
Hs(A)

|A|s
: A is Hs-measurable, A ⊂ Fu

}
= 1.

Proof. (a) is an immediate consequence of Lemma 3.4 and Lemma 3.5.

(b) Let α = sup
{Hs(A)
|A|s : A is Hs-measurable, A ⊂ Fu

}
, then from part (a),

α 6 1. It remains to show that α > 1.
Given ε > 0 we can find a cover {Ui} of Fu, such that

∑∞
i=1 |Ui|

s < Hs
∞(Fu)+ε =

Hs(Fu) + ε, by Lemma 3.5. Each set Ui is contained in a closed set of the same
diameter, so we may assume that the cover consists of closed sets which are Hs-
measurable. Also Fu ∩Ui is a Borel set and so is Hs-measurable, for each i ∈ N. As
Fu ⊂

⋃∞
i=1 Ui, we obtain,

Hs(Fu) 6
∞∑
i=1

Hs
(
Fu ∩ Ui

)
6

∞∑
i=1

α |Fu ∩ Ui|s 6 α
∞∑
i=1

|Ui|s < α
(
Hs(Fu) + ε

)
.

This argument holds for any ε > 0, so we conclude that Hs(Fu) 6 αHs(Fu), and
this, as 0 < Hs(Fu) < +∞, implies that α > 1.
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4 The exact Hausdorff measure of attractors of a

class of 2-vertex directed graph IFSs

There are few classes of sets for which the exact Hausdorff measure is known so
the work of this section is of interest because, in Theorem 4.6, we give sufficient
conditions for the calculation of the Hausdorff measure of both of the attractors of
a class of 2-vertex IFSs defined on R and illustrated in Figure 4.1. We define Iu,

e2 e3

e4

e1

vu

bvau bu av

ca db
gvgu

I vIu

Se4 Se2 Se3Se1

Figure 4.1: A 2-vertex directed graph IFS defined on R, the similarities Se1 , Se2 , Se3
and Se4 do not reflect.

Iv, as the smallest closed intervals containing the attractors Fu, Fv, so C(Fu) = Iu,
{au, bu} ⊂ Fu ⊂ Iu = [au, bu], with |Fu| = |Iu| = bu − au, and similarly at the
vertex v. We assume that all the similarities represented in diagrams in this paper
preserve orientation, that is they do not involve reflections. This means that we may
completely define directed graph IFSs by the use of diagrams. The strictly positive
numbers, a, gu, b, c, gv, d, |Iu| = a + gu + b, |Iv| = c + gv + d, are as illustrated in
Figure 4.1, and s = dimH Fu = dimH Fv, denotes the Hausdorff dimension of the
attractors. Since the gap lengths gu, gv, are strictly positive the CSSC holds. The
contracting similarity ratios of the similarities are given by

re1 =
|Se1(Iu)|
|Iu|

=
a

|Iu|
, re2 =

|Se2(Iv)|
|Iv|

=
b

|Iv|
,

re3 =
|Se3(Iv)|
|Iv|

=
c

|Iv|
, re4 =

|Se4(Iu)|
|Iu|

=
d

|Iu|
.

(4.1)

The similarities, Sei : R→ R, 1 6 i 6 4, are defined as

Se1(x) = re1(x− au) + au, Se2(x) = re2(x− av) + au + a+ gu,

Se3(x) = re3(x− av) + av, Se4(x) = re4(x− au) + av + c+ gv,
(4.2)

as illustrated in Figure 4.1.
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The arguments we use in this section are based on those given by Ayer and
Strichartz in [1] for 1-vertex IFSs, particularly Lemmas 2.1, 3.1, 4.1 and Theorem
4.2 of that paper but the arguments for directed graph IFSs are much more involved.
See also Theorem 7.1, [11].

We reserve the letter J to denote a closed interval in all that follows. The density
of an interval J ⊂ Iu, is defined as

du(J) =
µu(J)

|J |s
=
Hs(Fu ∩ J)

Hs(Fu) |J |s
,

and for J ⊂ Iv, as

dv(J) =
µv(J)

|J |s
=
Hs(Fv ∩ J)

Hs(Fv) |J |s
.

The maximum density for the intervals of Fu is the number sup
{
du(J) : J ⊂ Iu

}
,

and for the intervals of Fv is sup
{
dv(J) : J ⊂ Iv

}
.

We now prove a series of technical lemmas which lead up to Theorem 4.6, starting
with an immediate consequence of Corollary 3.6 of the preceding section.

Lemma 4.1. For the 2-vertex IFS of Figure 4.1,

sup
{
du(J) : J ⊂ Iu

}
=

1

Hs(Fu)
>

1

|Iu|s
, sup

{
dv(J) : J ⊂ Iv

}
=

1

Hs(Fv)
>

1

|Iv|s
.

In Lemma 4.2 we collect together some useful densities for future reference.
We use the eigenvector notation established in Section 3, with h = (hu, hv)

T =
(Hs(Fu),Hs(Fv))

T .

Lemma 4.2. For the 2-vertex IFS of Figure 4.1,

(a) du(Iu) = du(Se1(Iu)) =
1

|Iu|s
, (b) du(Se2(Iv)) =

hv
hu

1

|Iv|s
,

(c) dv(Iv) = dv(Se3(Iv)) =
1

|Iv|s
, (d) dv(Se4(Iu)) =

hu
hv

1

|Iu|s
,

(e) J ⊂ Se1(Iu), du(S
−1
e1

(J)) = du(J), (f) J ⊂ Se2(Iv),
hv
hu
dv(S

−1
e2

(J)) = du(J),

(g) J ⊂ Se3(Iv), dv(S
−1
e3

(J)) = dv(J), (h) J ⊂ Se4(Iu),
hu
hv
du(S

−1
e4

(J)) = dv(J).

Proof. We prove (h), the other parts can be proved in much the same way.

hu
hv
du(S

−1
e4

(J)) =
Hs(Fu)

Hs(Fv)

Hs
(
Fu ∩ S−1e4 (J)

)
Hs(Fu)

∣∣S−1e4 (J)
∣∣s =

Hs
(
S−1e4 (Se4(Fu) ∩ J)

)
Hs(Fv)

∣∣S−1e4 (J)
∣∣s

=
r−se4 H

s
(
Se4(Fu) ∩ J)

)
Hs(Fv)r−se4 |J |

s =
Hs(Fv ∩ J))

Hs(Fv) |J |s
= dv(J).

The value of hv
hu

can be calculated using Lemma 3.2, which states that(
rse1 rse2
rse4 rse3

)(
hu
hv

)
=

(
hu
hv

)
(4.3)
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and this implies
hv
hu

=
1− rse1
rse2

. (4.4)

In Lemma 4.3 there is a good reason for the choice of functions fu and fv. If
we were instead to use lu(x, y) = xs+ys

(x+gu+y)s
and lv(x, y) = xs+ys

(x+gv+y)s
then, in order

to obtain lu(a, b), lv(c, d) 6 1, we would require hu|Iv |s
hv |Iu|s = 1 and this is a much more

restrictive condition than (1). Also it is not obvious how such a condition could be
checked.

Lemma 4.3. For the 2-vertex IFS of Figure 4.1, let

P = {(x, y) : 0 6 x 6 a, 0 6 y 6 b} \ {(a, b)} ,
Q = {(x, y) : 0 6 x 6 c, 0 6 y 6 d} \ {(c, d)} ,

fu(x, y) =
xs + hv

hu
ys

(x+ gu + y)s
, and fv(x, y) =

xs + hu
hv
ys

(x+ gv + y)s
.

Suppose the following three conditions hold,

(1) |Iu| = |Iv| , (2)
hv
hu

6 1, (3)
(a+ gu)(|Iu|s − as)

bas
> 1,

then

(a) fu(a, b) = fv(c, d) = 1,

(b) fu(x, y) < 1, for all (x, y) ∈ P,
(c) fv(x, y) < 1, for all (x, y) ∈ Q.

Proof. (a) From the definition of fu,

fu(a, b) =
as + hv

hu
bs

(a+ gu + b)s
=
|Iu|s rse1 + hv

hu
|Iv|s rse2

|Iu|s
(by (4.1))

=
1

hu

(
rse1hu +

|Iv|s

|Iu|s
rse2hv

)
=

1

hu

(
rse1hu + rse2hv

)
(by (1))

= 1 (by (4.3)).

In the same way it can be shown that fv(c, d) = 1.
Parts (b) and (c) can be verified using calculus. To give a rough idea of the type

of argument involved, let ymax be the point at which the maximum value of fu(a, y)

occurs. It can be shown that ymax

b
=
( (a+gu)(|Iu|s−as)

bas

) 1
1−s , so if (3) holds ymax

b
> 1. As

fu(a, y) strictly increases up to ymax and fu(a, b) = 1, it follows that fu(a, y) < 1 for
all (a, y) ∈ P . See Lemma 3.4.4 [3].

The next two lemmas give important results which we will apply in the proof of
Theorem 4.6 which follows immediately after.
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Se2I v
gv

Se3I v Se4IuSe1Iu

J v

xu

gu

yu

yu

xv

yv

xu

Ju

Ju

xv

yv

J v

J vJu

I vIu

Figure 4.2: The intervals Ju and Jv.

Lemma 4.4. For the 2-vertex IFS of Figure 4.1, let Ju ⊂ Iu be an interval which
is not contained in the level-1 intervals Se1(Iu), Se2(Iv), with du(Ju) > 0 and let
Jv ⊂ Iv, be an interval which is not contained in the level-1 intervals Se3(Iv), Se4(Iu),
with dv(Jv) > 0, as illustrated in Figure 4.2. Suppose also that the conditions of
Lemma 4.3 hold.

(a) If Ju 6= Iu then du(Ju) < max
{
du(S

−1
e1

(Ju)), dv(S
−1
e2

(Ju))
}

.
(b) If Jv 6= Iv then dv(Jv) < max

{
dv(S

−1
e3

(Jv)), du(S
−1
e4

(Jv))
}

.

Proof. The lengths xu, yu, xv, yv, illustrated in Figure 4.2, are defined as

xu = |Se1(Iu) ∩ Ju| , yu = |Se2(Iv) ∩ Ju| , xv = |Se3(Iv) ∩ Jv| , yv = |Se4(Iu) ∩ Jv| ,

and for convenience we put 0 = | ∅ |, and also take the densities of the empty interval
to be zero, that is du(∅) = dv(∅) = 0. As we are assuming du(Ju) > 0, at least one
of xu or yu will be strictly positive, and similarly for xv and yv.

(a) du(Ju) =
Hs(Fu ∩ Ju)
Hs(Fu) |Ju|s

=
Hs(Fu ∩ (Se1(Iu) ∩ Ju)) +Hs(Fu ∩ (Se2(Iv) ∩ Ju))

Hs(Fu) |Ju|s

=
|Se1(Iu) ∩ Ju|

s du(Se1(Iu) ∩ Ju) + |Se2(Iv) ∩ Ju|
s du(Se2(Iv) ∩ Ju)

|Ju|s

=
xsudu(Se1(Iu) ∩ Ju) + ysudu(Se2(Iv) ∩ Ju)

(xu + gu + yu)s
.

Applying Lemma 4.2(e), (f), and Lemma 4.3(b), we obtain,

du(Ju) =
xsudu(Iu ∩ S−1e1 (Ju)) + hv

hu
ysudv(Iv ∩ S−1e2 (Ju))

(xu + gu + yu)s

=
xsudu(S

−1
e1

(Ju)) + hv
hu
ysudv(S

−1
e2

(Ju))

(xu + gu + yu)s

10



6

(
xsu + hv

hu
ysu

(xu + gu + yu)s

)
max

{
du(S

−1
e1

(Ju)), dv(S
−1
e2

(Ju))
}

= fu(xu, yu) max
{
du(S

−1
e1

(Ju)), dv(S
−1
e2

(Ju))
}

< max
{
du(S

−1
e1

(Ju)), dv(S
−1
e2

(Ju))
}
.

The proof of part (b) is similar to that given in part (a), applying instead Lemma
4.2(g), (h), and Lemma 4.3(c). See Lemma 3.4.5 [3].

We now consider sup
{
du(J) : Se1(Iu) ⊂ J ⊂ Iu

}
. As shown in Figure 4.1,

Iu = [au, bu], and Se1(Iu) = [au, au + a], so

sup
{
du(J) : Se1(Iu) ⊂ J ⊂ Iu

}
= sup

{
Hs(Fu ∩ [au, x])

Hs(Fu)(x− au)s
: x ∈ [au + a, bu]

}
.

The function Hs(Fu∩[au,x])
Hs(Fu)(x−au)s is a continuous function of x on the compact interval

[au + a, bu], where a > 0, so it is bounded and attains its bound for at least one
x0 ∈ [au + a, bu]. For the largest such x0, we may define an interval Lu = [au, x0],
Se1(Iu) ⊂ Lu ⊂ Iu, which satisfies,

du(Lu) = sup
{
du(J) : Se1(Iu) ⊂ J ⊂ Iu

}
. (4.5)

Similarly intervals Lv, Ru, Rv, exist for which the following equations hold,

dv(Lv) = sup
{
dv(J) : Se3(Iv) ⊂ J ⊂ Iv

}
, (4.6)

du(Ru) = sup
{
du(J) : Se2(Iv) ⊂ J ⊂ Iu

}
, (4.7)

dv(Rv) = sup
{
du(J) : Se4(Iu) ⊂ J ⊂ Iv

}
. (4.8)

Some possible candidates for Lu, Lv, Ru, Rv are illustrated in Figure 4.3.

Se2I vSe1Iu Se4IuSe3I v

I vIu I vIu

Lu Lv

Ru Rv

Figure 4.3: Some possibilities for the intervals Lu, Lv, Ru, and Rv.

Lemma 4.5. For the 2-vertex IFS of Figure 4.1, let the intervals Lu, Lv, Ru, and Rv

be as defined in Equations (4.5), (4.6), (4.7), and (4.8), and suppose the conditions
of Lemma 4.3 hold.

Then

(a) du(Lu) =
1

|Iu|s
, (b) dv(Lv) =

1

|Iu|s
,

(c) du(Ru) =
1

|Iu|s
, (d) dv(Rv) =

hu
hv

1

|Iu|s
.
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Proof. (a) As stated in Lemma 4.2(a), du(Iu) = du(Se1(Iu)) = 1
|Iu|s , which implies,

from the definition of Lu in Equation (4.5), that du(Lu) > 1
|Iu|s . For a contradiction

we assume du(Lu) > 1
|Iu|s . Clearly Se1(Iu) $ Lu $ Iu. Also if the right hand

endpoint of the interval Lu were to lie in the gap between the intervals Se1(Iu) and
Se2(Iv) then du(Se1(Iu)) > du(Lu) which contradicts our assumption, so the right
hand endpoint of Lu lies in Se2(Iv). This is the situation illustrated in Figure 4.4.

Se4 Se2 Se3

Lu ,2

Se1

Se3
−1

Se4
−1

Se1
−1

Se2
−1

Lu

Lu ,1

I vIu

Figure 4.4: The intervals Lu, Lu,1, and Lu,2.

Applying Lemma 4.4(a), we obtain

du(Lu) < dv(S
−1
e2

(Lu)),

since du(S
−1
e1

(Lu)) = du(Iu) = 1
|Iu|s < du(Lu). If necessary, by repeatedly applying

the expanding similarity S−1e3 to the interval S−1e2 (Lu)∩ Iv, we must eventually arrive
at an interval Lu,1, which is not contained in the interval Se3(Iv), where Lu,1 =
S−me3 (S−1e2 (Lu) ∩ Iv), for some m > 0. By Lemma 4.2(g) dv(S

−m
e3

(S−1e2 (Lu) ∩ Iv)) =
dv(S

−1
e2

(Lu)) so
du(Lu) < dv(Lu,1). (4.9)

and dv(Lu,1) >
1
|Iu|s . Again the right hand endpoint of Lu,1 cannot lie in the gap

between the intervals Se3(Iv) and Se4(Iu) for then, dv(Se3(Iv)) > dv(Lu,1) >
1
|Iu|s .

This is impossible because dv(Se3(Iv)) = 1
|Iu|s , by Lemma 4.2(c) and condition (1)

of Lemma 4.3. Similarly since dv(Iv) = 1
|Iu|s , again by Lemma 4.2(c) and condition

(1) of Lemma 4.3, we cannot have Lu,1 = Iv. Therefore Se3(Iv) $ Lu,1 $ Iv. The
situation is shown in Figure 4.4 for m = 1.
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Now we may apply Lemma 4.4(b), to obtain

dv(Lu,1) < du(S
−1
e4

(Lu,1)),

as dv(S
−1
e3

(Lu,1)) = dv(Iv) = 1
|Iu|s < dv(Lu,1). If necessary, by repeatedly applying

the expanding similarity S−1e1 to the interval S−1e4 (Lu,1)∩Iu, we must eventually arrive
at an interval Lu,2, with Se1(Iu) ⊂ Lu,2, where Lu,2 = S−ne1 (S−1e4 (Lu,1) ∩ Iu), for some
n > 0. The situation is illustrated in Figure 4.4 for n = 1. By Lemma 4.2(e)
du(Lu,2) = du(S

−1
e4

(Lu,1)) so

dv(Lu,1) < du(Lu,2). (4.10)

From the definition of the interval Lu in Equation (4.5), du(Lu,2) 6 du(Lu), which
together with Equations (4.9) and (4.10) gives

du(Lu) < dv(Lu,1) < du(Lu,2) 6 du(Lu).

This contradiction completes the proof of part (a).
The proof of part (b) is symmetrically identical to that of part (a). The proofs of

parts (c) and (d) are slightly more involved but very similar in method. See Lemma
3.4.6 [3].

The next theorem enables the calculation of the Hausdorff measure of both of
the attractors of a class of 2-vertex IFSs.

Theorem 4.6. For the 2-vertex IFS of Figure 4.1, where s = dimH Fu = dimH Fv,
suppose that the following conditions hold,

(1) |Iu| = |Iv| , (2)
hv
hu

6 1, (3)
(a+ gu)(|Iu|s − as)

bas
> 1.

Then

Hs(Fu) = |Iu|s and Hs(Fv) = |Iu|s
(

1− rse1
rse2

)
.

Proof. For any interval J ⊂ Iu, with du(J) > 0, we aim to show that du(J) 6 1
|Iu|s ,

then, by Lemma 4.1, the maximum density will satisfy

sup
{
du(J) : J ⊂ Iu

}
=

1

Hs(Fu)
=

1

|Iu|s
.

By Lemma 4.2(e), for any interval J ⊂ Iu, du(J) = du(S
−1
e1

(Se1(J))) = du(Se1(J)), so
it is enough to prove du(J) 6 1

|Iu|s for any interval J contained in a level-1 interval.

Let J ⊂ Iu be any interval contained in one of the level-1 intervals Se1(Iu) or
Se2(Iv) with du(J) > 0. Operating on J with the expanding similarities S−1e1 , S−1e2 ,
S−1e3 , S−1e4 , as necessary, we must eventually arrive at an interval Ju ⊂ Iu or Jv ⊂ Iv,
which is not contained in any level-1 interval. The situation is illustrated in Figure
4.2. For Ju ⊂ Iu the maps S−1e2 and S−1e4 must be applied an equal number of times
to the interval J , and so the scaling factors of hv

hu
and hu

hv
in Lemma 4.2(f) and (h)

will cancel each other out. This means, by Lemma 4.2(e), (f), (g) and (h), that
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du(Ju) = du(J). If Ju = Iu, then du(Ju) = 1
|Iu|s , by Lemma 4.2(a), so we may

assume Ju 6= Iu. Applying Lemma 4.4(a) gives

du(J) = du(Ju) < max
{
du(S

−1
e1

(Ju)), dv(S
−1
e2

(Ju))
}
. (4.11)

For Jv ⊂ Iv, the map S−1e2 must have been applied exactly one more time to the
interval J than the map S−1e4 , so a factor of hv

hu
will occur by Lemma 4.2(f). This

means, by Lemma 4.2(e), (f), (g) and (h), that hv
hu
dv(Jv) = du(J). If Jv = Iv, then

hv
hu
dv(Jv) = hv

hu
1
|Iu|s 6 1

|Iu|s , by Lemma 4.2(c) and condition (2), so we may assume

Jv 6= Iv. Applying Lemma 4.4(b) gives

du(J) =
hv
hu
dv(Jv) <

hv
hu

max
{
dv(S

−1
e3

(Jv)), du(S
−1
e4

(Jv))
}
. (4.12)

We now determine upper bounds for the densities (a) du(S
−1
e1

(Ju)), (b) dv(S
−1
e2

(Ju)),
(c) dv(S

−1
e3

(Jv)), and (d) du(S
−1
e4

(Jv)), considering each in turn.
(a) du(S

−1
e1

(Ju)).
Expanding the interval S−1e1 (Ju)∩ Iu, if necessary, we obtain an interval Ju,1, not

contained in any level-1 interval, where one of the following two possibilites hold,

(i) Se2(Iv) ⊂ Ju,1 =
(
(S−1e4 ◦ S

−1
e2

)m
)(
S−1e1 (Ju) ∩ Iu

)
⊂ Iu,

(ii) Se4(Iu) ⊂ Ju,1 =
(
S−1e2 ◦ (S−1e4 ◦ S

−1
e2

)n
)(
S−1e1 (Ju) ∩ Iu

)
⊂ Iv,

for m,n > 0. For (i), using Lemma 4.2(f) and (h), and Lemma 4.5(c), we obtain

du(S
−1
e1

(Ju)) = du(S
−1
e1

(Ju) ∩ Iu) = du(Ju,1) 6 du(Ru) =
1

|Iu|s
.

For (ii), using Lemma 4.2(f) and (h), and Lemma 4.5(d), we obtain

du(S
−1
e1

(Ju)) = du(S
−1
e1

(Ju) ∩ Iu) =
hv
hu
dv(Ju,1) 6

hv
hu
dv(Rv) =

hv
hu

hu
hv

1

|Iu|s
=

1

|Iu|s
,

In both cases

du(S
−1
e1

(Ju)) 6
1

|Iu|s
.

(b) dv(S
−1
e2

(Ju)).
Expanding the interval S−1e2 (Ju)∩Iv, if necessary, we obtain an interval Ju,1 ⊂ Iv,

not contained in any level-1 interval, with

Se3(Iv) ⊂ Ju,1 =
(
(S−1e3 )m

)(
S−1e2 (Ju) ∩ Iv

)
⊂ Iv,

for m > 0. By Lemma 4.2(g) and Lemma 4.5(b),

dv(S
−1
e2

(Ju)) = dv(S
−1
e2

(Ju) ∩ Iv) = dv(Ju,1) 6 dv(Lv) =
1

|Iu|s
.

(c) dv(S
−1
e3

(Jv)).
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Expanding the interval S−1e3 (Jv)∩ Iv, if necessary, we obtain an interval Jv,1, not
contained in any level-1 interval, where one of the following two possibilites hold,

(i) Se4(Iu) ⊂ Jv,1 =
(
(S−1e2 ◦ S

−1
e4

)m
)(
S−1e3 (Jv) ∩ Iv

)
⊂ Iv,

(ii) Se2(Iv) ⊂ Jv,1 =
(
S−1e4 ◦ (S−1e2 ◦ S

−1
e4

)m
)(
S−1e3 (Jv) ∩ Iv

)
⊂ Iu,

for m,n > 0. For (i), using Lemma 4.2(f) and (h), and Lemma 4.5(b), gives

dv(S
−1
e3

(Jv)) = dv(S
−1
e3

(Jv) ∩ Iv) = dv(Jv,1) 6 dv(Rv) =
hu
hv

1

|Iu|s
.

For (ii), using Lemma 4.2(f) and (h), and Lemma 4.5(c), gives

dv(S
−1
e3

(Jv)) = dv(S
−1
e3

(Jv) ∩ Iv) =
hu
hv
du(Jv,1) 6

hu
hv
du(Ru) =

hu
hv

1

|Iu|s
.

In both cases

dv(S
−1
e3

(Jv)) 6
hu
hv

1

|Iu|s
.

(d) du(S
−1
e4

(Jv)).
Expanding the interval S−1e4 (Jv)∩Iu, if necessary, we obtain an interval Jv,1 ⊂ Iu,

not contained in any level-1 interval, with

Se1(Iu) ⊂ Jv,1 =
(
(S−1e1 )m

)(
S−1e4 (Jv) ∩ Iu

)
⊂ Iu,

for m > 0. By Lemma 4.2(e) and Lemma 4.5(a),

du(S
−1
e4

(Jv)) = du(S
−1
e4

(Jv) ∩ Iu) = du(Jv,1) 6 du(Lu) =
1

|Iu|s
.

Putting the results of parts (a) and (b) into Equation (4.11) we obtain

du(J) = du(Ju) < max
{
du(S

−1
e1

(Ju)), dv(S
−1
e2

(Ju))
}
6

1

|Iu|s
.

Putting the results of parts (c) and (d) into Equation (4.12), remembering that by
condition (2), hu

hv
> 1, gives

du(J) =
hv
hu
dv(Jv) <

hv
hu

max
{
dv(S

−1
e3

(Jv)), du(S
−1
e4

(Jv))
}
6
hv
hu

hu
hv

1

|Iu|s
=

1

|Iu|s
.

Therefore in all cases

du(J) 6
1

|Iu|s
,

which completes the proof that Hs(Fu) = |Iu|s. The expression for Hs(Fv) now
follows immediately by Equation (4.4).
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We now define the 2-vertex IFS (on the unit interval) of Figure 4.1 to be the 2-
vertex directed graph IFS of Figure 4.1 but with au, bu, av and bv taking the specific
values au = av = 0 and bu = bv = 1, so that Iu = Iv = [0, 1] and |Iu| = |Iv| = 1.
For the rest of this paper we only consider this family of 2-vertex directed graph
IFSs for which condition (1) of Theorem 4.6 always holds. By Equations (4.1), the
contracting similarity ratios of these IFSs are

re1 = a, re2 = b, re3 = c, re4 = d, (4.13)

and by Equations (4.2), the similarities are

Se1(x) = re1x, Se2(x) = re2x+ a+ gu,

Se3(x) = re3x, Se4(x) = re4x+ c+ gv.
(4.14)

> restart;

> a:=11/23: g_u:=5/23: b:=7/23:  c:=13/73: g_v:=53/73: d:=7/73: 

> plot( (a+g_u)*(((a+g_u+b)^S-a^S)/(b*a^S)), S=0..1, color=black, 

font=[TIMES,ROMAN,15], thickness=3 );

Figure 4.5: A plot of (a+gu)(|Iu|s−as)
bas

.

We finish this section with a few such examples to show that the conditions of
Theorem 4.6 do in fact hold for a wide range of parameter values. Consider the
2-vertex IFS (on the unit interval) of Figure 4.1 and let a = 11

23
, gu = 5

23
, b = 7

23

which we keep fixed. By varying the other three parameters c, gv and d we may
let the Hausdorff dimension s range between 0 and 1. The graph of Figure 4.5
shows clearly that once condition (3) holds it continues to do so as s increases.
Putting c = 13

73
, gv = 53

73
, d = 7

73
, the Hausdorff dimension is s = 0.4934118279,

and hv
hu

= 0.5486642748 < 1, so (2) holds, and (3) holds because (a+gu)(|Iu|s−as)
bas

=
1.003400992 > 1. Now increasing c and d will increase the Hausdorff dimension
and so (3) will continue to hold but eventually (2) will fail. As an example let
c = 43

73
, gv = 7

73
, d = 23

73
this gives a Hausdorff dimension of s = 0.7990855723 but (2)

fails because hv
hu

= 1.152194154.
Overall then this brief analysis does confirm that conditions (1), (2), and (3) will

hold for a wide range of values of the parameters. Thus we have identified attractors
of a class of 2-vertex IFSs for which the Hausdorff measure is known.

5 Gap lengths

In this section we only consider IFSs,
(
V,E∗, i, t, r, ((R, | |))v∈V , (Se)e∈E1

)
, for which

the convex strong separation condition (CSSC) holds. The attractors of such IFSs
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can be written as (Fu)u∈V =
⋂∞
k=0(F

k
u )u∈V , where F k

u denotes the set of level-k
intervals at the vertex u, see Subsection 2.2.1 [3], for the 1-vertex case see [8]. Some
level-k intervals are illustrated for a 2-vertex IFS in Figure 7.1. The CSSC ensures
that if there are n edges leaving a vertex u then the level-1 intervals, F 1

u , will consist
of n disjoint intervals which will have n − 1 open intervals between them. That is
Iu \ F 1

u =
⋃n−1
i=1 J

1
i , where Iu = C(Fu) and each J1

i is an open interval. The set of
level-1 gap lengths at the vertex u is defined as

G1
u =

{∣∣J1
i

∣∣ : J1
i is an open interval in Iu \ F 1

u =
n−1⋃
i=1

J1
i

}
. (5.1)

In general Iu \F k
u is a finite union of open intervals so Iu \F k

u =
⋃
i∈Hk

Jki , for some
finite indexing set Hk. The set of level-k gap lengths at the vertex u is defined as

Gk
u =

{∣∣Jki ∣∣ : Jki is an open interval in Iu \ F k
u =

⋃
i∈Hk

Jki

}
.

It follows that Iu \ Fu = Iu \
(⋂∞

k=0 F
k
u

)
=
⋃∞
k=0 Iu \ F k

u . Since Iu \ F k
u =

⋃
i∈Hk

Jki ,

for some finite indexing set Hk and open intervals Jki it is clear that Iu \ Fu can be
written as a countable union of open intervals, Iu \ Fu =

⋃∞
i=1 Ji. We define the

uniquely determined set of gap lengths of the attractor Fu as

Gu =
∞⋃
n=1

Gn
u =

{
|Ji| : Ji is an open interval in Iu \ Fu =

∞⋃
i=1

Ji

}
.

We now give an alternative description of the set Gu. For each edge e ∈ E1 let
Re : R→ R be the map Re(x) = rex, where re is the contracting similarity ratio of

Se. Let f̃ : (K(Rn))#V → (K(Rn))#V , be the map defined by

f̃
(
(Au)u∈V

)
=

( ⋃
e∈E1

u

Re(At(e))
⋃

G1
u

)
u∈V

,

for each (Au)u∈V ∈ (K(Rn))#V . Here the sets of level-1 gap lengths, (G1
u)u∈V , which

are called condensation sets in [2] for standard (1-vertex) IFSs, are clearly non-empty

and compact so (G1
u)u∈V ∈ (K(Rn))#V . It can be shown that f̃ is a contraction on

the complete metric space ((K(Rn))#V , DH), where DH is the metric defined as the
maximum of the coordinate Hausdorff metrics, see Theorem 9.1, [2], for a proof for
1-vertex IFSs. As

(Gu ∪ {0})u∈V =

( ⋃
e∈E1

u

Re(Gt(e) ∪ {0})
⋃

G1
u

)
u∈V

, (5.2)

the Contraction Mapping Theorem ensures that (Gu ∪ {0})u∈V is the unique fixed

point of f̃ . The invariance Equations (2.1) and (5.2) show clearly the close relation-
ship between attractors and their sets of gap lengths.

17



At a given vertex u we can write the set of gap lengths in terms of similarity
ratios of paths in the graph and level-1 gap lengths as

Gu =
⋃

gu∈G1
u

gu
{

1, re : e ∈ E∗uu
} ⋃ ⋃

v∈V
v 6=u
gv∈G1

v

gv
{
re : e ∈ E∗uv

}
.

For an IFS,
(
V,E∗, i, t, r, ((R, | |))v∈V , (Se)e∈E1

)
, for which the CSSC holds,

Proposition 2.3.6 [3] gives a constructive algorithm for calculating the set of gap
lengths of any attractor as a finite union of cosets of finitely generated semigroups
of positive real numbers. The generators of these semigroups are contracting sim-
ilarity ratios of simple cycles in the directed graph. The algorithm works for any
such IFS with no limit on the number of vertices in the directed graph.

We use the notation (R+,×) for the semigroup of positive real numbers under
multiplication. For xi ∈ R+, 1 6 i 6 j, 〈1, x1, x2, . . . , xj〉 is the finitely generated

subsemigroup (with identity) of (R+,×), where 〈1, x1, x2, . . . , xj〉 = {xk11 xk22 · · · x
kj
j :

ki ∈ N∪{0}, 1 6 i 6 j} and for y ∈ R+ we write y 〈1, x1, x2, . . . , xj〉 for a coset with

y 〈1, x1, x2, . . . , xj〉 = {yxk11 xk22 · · ·x
kj
j : ki ∈ N ∪ {0}, 1 6 i 6 j}. We will use the

notation 〈x1, x2, . . . , xj〉group = {xk11 xk22 · · ·x
kj
j : ki ∈ Z, 1 6 i 6 j} for the finitely

generated group, the group operation again being multiplication.
Applying the algorithm of Proposition 2.3.6 [3], or alternatively by inspection,

the gap lengths of the attractor Fu of the 2-vertex IFS (on the unit interval) of
Figure 4.1 can be expressed as

Gu = gu
{

1, re : e ∈ E∗uu
}
∪ gv

{
re : e ∈ E∗uv

}
= gu 〈1, a, bd〉 ∪ gubd 〈1, a, bd, c〉 ∪ gvb 〈1, a, bd, c〉
= gu 〈1, a〉 ∪ gubd 〈1, a, bd, c〉 ∪ gvb 〈1, a, bd, c〉 . (5.3)

The generators of these semigroups are contracting similarity ratios of the simple
cycles in the graph with re1 = a, re2re4 = bd, and re3 = c.

Let
(
V,E∗, i, t, r, ((R, | |))v∈V , (Se)e∈E1

)
be any 1-vertex IFS, for which the CSSC

holds, and which has n edges leaving its single vertex then, as given in Equation
(5.1), the level-1 gap lengths are G1 = {gj : 1 6 j 6 n− 1} and the gap lengths of
the attractor F are given by

G =
n−1⋃
j=1

gj 〈1, re1 , re2 , . . . , ren〉 , (5.4)

where gj, rei ∈ R+, and rei , 1 6 i 6 n, are the contracting similarity ratios of the n
similarities (Se)e∈E1 . See Corollary 2.3.8 [3].

In the next section we use these expressions for gap lengths as a means of distin-
guishing between the attractors of 2-vertex IFSs and the attractors of 1-vertex IFSs
for which the CSSC holds.
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6 Attractors of directed graph IFSs that are not

attractors of standard IFSs for which the CSSC

holds

We now simplify the 2-vertex IFS (on the unit interval) of Figure 4.1 even further
by taking the similarities Se2 and Se4 to have the same similarity ratio. That is we
put b = re2 = re4 = d. The gap lengths of the attractor Fu are now

Gu = gu 〈1, a〉 ∪ gub2
〈
1, a, b2, c

〉
∪ gvb

〈
1, a, b2, c

〉
, (6.1)

by Equation (5.3). From Equations (6.1) and (5.4), to prove that Fu is an attractor
which cannot be the attractor of any standard (1-vertex) IFS, for which the CSSC
holds, it is enough to prove Lemma 6.1, which shows that Gu cannot be the set
of gap lengths of any 1-vertex IFS for which the CSSC holds. We state this for-
mally in Corollary 6.2. We will need the following notion of multiplicative rational
independence.

Let U = {u1, u2, . . . , ur} be a set of positive real numbers, then U is a multi-
plicatively rationally independent set if, for all integers mi ∈ Z,

∑r
i=1mi lnui = 0,

implies mi = 0 for all i, 1 6 i 6 r, or equivalently if
∏r

i=1 u
mi
i = 1, then mi = 0 for

all i, 1 6 i 6 r.

Lemma 6.1. Let {gu, gv, a, b, c} ⊂ R+ be a multiplicatively rationally independent
set. Then

gu 〈1, a〉 ∪ gub2
〈
1, a, b2, c

〉
∪ gvb

〈
1, a, b2, c

〉
6=

m⋃
j=1

hj 〈1, x1, x2, . . . , xn〉 ,

for any hj ∈ R+, 1 6 j 6 m, and any xk ∈ R+, 1 6 k 6 n.

Proof. For a contradiction we assume there exist positive real numbers hj, 1 6 j 6
m, and xk, 1 6 k 6 n, such that

gu 〈1, a〉 ∪ gub2
〈
1, a, b2, c

〉
∪ gvb

〈
1, a, b2, c

〉
=

m⋃
j=1

hj 〈1, x1, x2, . . . , xn〉 . (6.2)

This can be written as guA ∪ gvB =
⋃m
j=1 hj 〈1, x1, x2, . . . , xn〉, where

A = 〈1, a〉 ∪ b2
〈
1, a, b2, c

〉
=
{
apb2qcr : p, q, r ∈ N ∪ {0} , if q = 0 then r = 0

}
,

B = b
〈
1, a, b2, c

〉
=
{
apb2q+1cr : p, q, r ∈ N ∪ {0}

}
.

(a) guA ∩ gvB = ∅.
If guA ∩ gvB 6= ∅, then there exists x ∈ guA ∩ gvB with x = g1ug

0
va

p1b2q1cr1 =
g0ug

1
va

p2b2q2+1cr2 , which, by the rational independence of the set {gu, gv, a, b, c}, im-
plies 1 = 0. This means that for any hj, 1 6 j 6 m, either hj ∈ guA or hj ∈ gvB
but not both, so we consider each case in turn in parts (b) and (c).

(b) hj ∈ guA implies hj〈1, x1, x2, . . . , xn〉 ⊂ guA and 〈1, x1, x2, . . . , xn〉 ⊂ 〈1, a, b2, c〉.
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Suppose hj ∈ guA then hj = g1ua
α1b2α2cα3 . Let x ∈ 〈1, x1, x2, . . . , xn〉. Assume

hjx ∈ gvB then hjx = g1ua
α1b2α2cα3x = g1va

β1b2β2+1cβ3 , and so x is given by x =
g−1u g1va

β1−α1b2(β2−α2)+1cβ3−α3 , where we are now considering x ∈ 〈gu, gv, a, b, c〉group.
Consider any k ∈ N with k > 2, then the exponent of gv in hjx

k is k. Either
hjx

k ∈ guA or hjx
k ∈ gvB. If hjx

k ∈ guA then by rational independence k = 0,
which is a contradiction and if hjx

k ∈ gvB then by rational independence k = 1
which is again a contradiction. Therefore hjx /∈ gvB and so hjx ∈ guA.

We now write hjx as hjx = g1ua
α1b2α2cα3x = g1ua

β1b2β2cβ3 , with x given as
x = aβ1−α1b2(β2−α2)cβ3−α3 , where strictly speaking we are again considering x ∈
〈gu, gv, a, b, c〉group. For any k ∈ N, the exponent of gu in hjx

k is 1 and so by rational
independence, if hjx

k ∈ gvB, then 1 = 0, which implies hjx
k ∈ guA, and hjx

k =
g1ua

α1+k(β1−α1)b2α2+2k(β2−α2)cα3+k(β3−α3) = g1ua
δ1(k)b2δ2(k)cδ3(k), where δ1(k), δ2(k),δ3(k)

∈ N∪{0}. Again by rational independence we may conclude that α1+k(β1−α1) > 0,
2α2 + 2k(β2 − α2) > 0, and α3 + k(β3 − α3) > 0, for all k ∈ N. Hence β1 − α1 > 0,
β2 − α2 > 0, β3 − α3 > 0 so that x ∈ 〈1, a, b2, c〉. In summary we have shown that
hj ∈ guA implies hjx ∈ guA for all x ∈ 〈1, x1, x2, . . . , xn〉, and 〈1, x1, x2, . . . , xn〉 ⊂
〈1, a, b2, c〉.

(c) hj ∈ gvB implies hj〈1, x1, x2, . . . , xn〉 ⊂ gvB and 〈1, x1, x2, . . . , xn〉 ⊂ 〈1, a, b2, c〉.
The proof is very similar to part (b), see Lemma 2.6.1 [3].

Relabelling the hj if necessary, the results of parts (a), (b) and (c) imply that the
set {h1, h2, . . . , hm} must split into two non-empty subsets, {h1, h2, . . . , hr} ⊂ guA
and {hr+1, hr+2, . . . , hm} ⊂ gvB, with

guA =
r⋃
j=1

hj 〈1, x1, x2, . . . , xn〉 , (6.3)

gvB =
m⋃

j=r+1

hj 〈1, x1, x2, . . . , xn〉 ,

where 〈1, x1, x2, . . . , xn〉 ⊂ 〈1, a, b2, c〉.

(d) At least one of the generators xk, 1 6 k 6 n, of the semigroup 〈1, x1, x2, . . . , xn〉,
is of the form xk = ct, for some t ∈ N.

We recall that guA = gu {apb2qcr : p, q, r,∈ N ∪ {0} , if q = 0 then r = 0}, so
that gub

2cm ∈ guA for all m ∈ N. Considering M ∈ N as fixed, then from Equation
(6.3)

gub
2cM = hsx

i1
1 x

i2
2 · · ·xinn , (6.4)

for some hs ∈ guA, 1 6 s 6 r, and non-negative integers ik ∈ N∪{0}, 1 6 k 6 n. For
a contradiction we now assume that none of the xk, 1 6 k 6 n, is of the form xk =
ct, t ∈ N. Rational independence and the fact that 〈1, x1, x2, . . . , xn〉 ⊂ 〈1, a, b2, c〉,
then implies that hs = guc

p and xk = b2cq, for some k, 1 6 k 6 n, with ik = 1 and
il = 0 for all l 6= k, and where p, q ∈ N ∪ {0}, with p + q = M . That is Equation
(6.4) reduces to gub

2cM = hsxk. Since we only have a finite number of generators in
the semigroup 〈1, x1, x2, . . . , xn〉 and a finite set of numbers {hi : 1 6 i 6 r}, we can
only produce at most r × n distinct numbers of the form gub

2cm, on the right-hand
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side of Equation (6.3). Therefore

{
gub

2cm : m ∈ N
}
6⊂

r⋃
j=1

hj 〈1, x1, x2, . . . , xn〉 ,

but {
gub

2cm : m ∈ N
}
⊂ guA.

This contradiction of Equation (6.3) means our assumption is false and at least one
of the generators xk, 1 6 k 6 n, must be of the form xk = ct, for some t ∈ N.

(e) gua /∈
⋃r
j=1 hj 〈1, x1, x2, . . . , xn〉.

From the result of part (d), relabelling the xk if necessary, so that x1 = ct, t ∈ N,
we may write Equation (6.3) as

guA = gu 〈1, a〉 ∪ gub2
〈
1, a, b2, c

〉
=

r⋃
j=1

hj
〈
1, ct, x2, . . . , xn

〉
,

where 〈1, ct, x2, . . . , xn〉 ⊂ 〈1, a, b2, c〉. Now gu 〈1, a〉 ∩ gub2 〈1, a, b2, c〉 = ∅, by the
rational independence of the set {gu, gv, a, b, c}, so for each j, 1 6 j 6 r, either
hj ∈ gu 〈1, a〉 or hj ∈ gub2 〈1, a, b2, c〉 but not both.

Suppose hj ∈ gu 〈1, a〉, then hj = gua
k for some k ∈ N ∪ {0}. It follows,

again by rational independence, that hjc
t = gua

kct /∈ gu 〈1, a〉 and hjc
t = gua

kct /∈
gub

2 〈1, a, b2, c〉, that is hjc
t /∈ guA. This contradiction means hj ∈ gub

2〈1, a, b2, c〉
for each j, 1 6 j 6 r, and so we may write hj as hj = gub

2akjb2ljcmj , for some
kj, lj,mj ∈ N ∪ {0}. The rational independence of the set {gu, gv, a, b, c}, together
with the fact that 〈1, ct, x2, . . . , xn〉 ⊂ 〈1, a, b2, c〉, implies that

gua /∈
r⋃
j=1

gub
2akjb2ljcmj

〈
1, ct, x2, . . . , xn

〉
=

r⋃
i=1

hi 〈1, x1, x2, . . . , xn〉 .

As gua ∈ guA, this is again a contradiction of Equation (6.3). Therefore our
original assumption is false, that is Equation (6.2) does not hold.

Corollary 6.2. For the 2-vertex IFS (on the unit interval) of Figure 4.1, but with
b = d, if the set {gu, gv, a, b, c} ⊂ R+ is a multiplicatively rationally independent set,
then the attractor at the vertex u, Fu, is not the attractor of any standard (1-vertex)
IFS, defined on R, for which the CSSC holds.

The next theorem generalises Corollary 6.2 to a large class of directed graph
IFSs, with any number of vertices, provided the directed graphs contain a particular
subgraph. The proof is omitted but it is similar to the proof of Lemma 6.1, see
Theorem 2.6.3 [3].

The vertex list of a path e = e1 · · · ek ∈ E∗ is v1v2v3 · · · vk+1 = i(e1)t(e1)t(e2) · · ·
t(ek). A simple path visits no vertex more than once, so a path e = e1 · · · ek ∈ E∗
is simple if its vertex list contains exactly k + 1 different vertices. A simple cycle is
a cycle which visits no vertex more than once apart from the initial and terminal
vertices which are the same, so if e = e1 · · · ek ∈ E∗ is a simple cycle then i(e) = t(e)
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and its vertex list contains exactly k different vertices. We say that two distinct paths
are attached if their vertex lists contain a common vertex or vertices. We also say
that a path e is attached to a vertex v if v is in the vertex list of e. A chain is a finite
sequence of distinct simple cycles where each simple cycle in the sequence is attached
only to its immediate predecessor and successor cycles and to no other cycles in the
sequence. A chain attached to a vertex v is a chain of distinct simple cycles such
that the first cycle in the sequence is attached to the vertex v and thereafter no
other cycle in the chain is attached to v.

Theorem 6.3. Let
(
V,E∗, i, t, r, ((R, | |))v∈V , (Se)e∈E1

)
be any directed graph IFS,

satisfying the CSSC, whose directed graph contains three distinct simple cycles c1,
c2, and c3, such that c1 is attached to a vertex u, c2c3 is a chain of length 2 attached
to u and no chain in the graph, attached to u, contains both c1 and c3. Let Xu ⊂ R+,
be the set of gap lengths and contracting similarity ratios

Xu =
{
gw, rci , rp : gw ∈ G1

w, w ∈ V, ci ∈ T, p ∈ D∗uv, v ∈ V, v 6= u
}
,

where G1
w is the set of level-1 gap lengths at the vertex w ∈ V , T = {ci : i ∈ I}, the

set of all simple cycles in the graph, and D∗uv ⊂ E∗uv, is the set of all simple paths
from the vertex u to the vertex v.

Suppose the set Xu is multiplicatively rationally independent, then the attractor
at the vertex u, Fu, is not the attractor of any standard (1-vertex) IFS, defined on
R, for which the CSSC holds.

We can take the simple cycles of Theorem 6.3 to be c1 = e1, c2 = e2e4 and
c3 = e3, for the edges ei, 1 6 i 6 4, of the 2-vertex IFS (on the unit interval) of
Figure 4.1. This means Theorem 6.3 immediately yields the next corollary, with the
set Xu = {gu, gv, a, bd, c, b}. The set Xu is multiplicatively rationally independent if
and only if the set {gu, gv, a, b, c, d} is multiplicatively rationally independent.

Corollary 6.4. For the 2-vertex IFS (on the unit interval) of Figure 4.1, if the
set {gu, gv, a, b, c, d} ⊂ R+ is a multiplicatively rationally independent set, then the
attractor at the vertex u, Fu, is not the attractor of any standard (1-vertex) IFS,
defined on R, for which the CSSC holds.

7 Attractors of directed graph IFSs that are not

attractors of standard IFSs

Before proving Theorems 7.4 and 7.5 we first give some important consequences of
Hs(Fu) = |Iu|s in Lemmas 7.1 and 7.3. The arguments we use are based on those
employed by Feng and Wang in [9].

To illustrate the significance of Lemma 7.1, consider the 1-vertex IFS defined
on R by the similarities S1(x) = 1

3
x, S2(x) = 1

27
x + 4

27
, S3(x) = 1

3
x + 2

3
. This is a

modification of the Cantor set, C, which is the attractor of the IFS defined by S1 and
S3, and for which Hs(C) = 1. The attractor F is the unique non-empty compact set
satisfying F =

⋃3
i=1 Si(F ). The OSC is satisfied for this IFS, this can be verified by

taking the open set as U =
(
0, 1

3

)
∪
(
2
3
, 1
)
. Actually the strong separation condition
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(SSC) holds but the CSSC does not. In particular, for I = [0, 1], S2(I) ⊂ S1(I)
but S1(F ) ∩ S2(F ) = ∅. So S2(I) ⊂ S1(I) does not imply S2(F ) ⊂ S1(F ). In fact
S1(F ) $ F ∩ S1(I), since F ∩ S1(I) = S1(F ) ∪ S2(F ). It follows by Lemma 7.1(b)
that Hs(F ) 6= |I|s, and so Hs(F ) < 1, by Lemmas 3.4 and 3.5.

Lemma 7.1. Let
(
V,E∗, i, t, r, (R, | |)v∈V , (Se)e∈E1

)
be any directed graph IFS for

which the OSC holds. For the attractor Fu at the vertex u, let s = dimH Fu and
{au, bu} ⊂ Fu ⊂ Iu = [au, bu]. Let Sf : R → R be any similarity, with contracting
similarity ratio rf , 0 < rf < 1, and let Sf (Iu) = [Sf (au), Sf (bu)] = [af , bf ].

If Sf (Fu) ⊂ Fu and Hs(Fu) = |Iu|s then

(a) Hs(Sf (Fu)) = Hs(Fu ∩ Sf (Iu)) = (bf − af )s ,
(b) Sf (Fu) = Fu ∩ Sf (Iu).

Proof. (a) Clearly Sf (Fu) ⊂ Fu ∩ Sf (Iu), so

(bf − af )s > Hs(Fu ∩ [af , bf ]) (by Corollary 3.6(a))

= Hs(Fu ∩ Sf (Iu))
> Hs(Sf (Fu))

= rsfHs(Fu) (by the scaling property of the measure)

=
(bf − af )s

|Iu|s
Hs(Fu)

= (bf − af )s (as Hs(Fu) = |Iu|s).

(b) As Sf (Fu) ⊂ Fu ∩ Sf (Iu), we assume for a contradiction that Sf (Fu) $ Fu ∩
Sf (Iu), so there exists a point x ∈ Fu ∩ Sf (Iu), such that x /∈ Sf (Fu). As Sf (Fu)
is compact, dist(x, Sf (Fu)) > 0. The map, φu : EN

u → Fu, given by φu(e) = x,
{x} =

⋂∞
k=1 Se|k(Ft(e|k)), is surjective so there exists an infinite path in the directed

graph, e ∈ EN
u , with {x} =

⋂∞
k=1 Se|k(Ft(e|k)). Now

(
Se|k(Ft(e|k))

)
, is a decreasing

sequence of non-empty compact subsets of Fu, whose diameters tend to zero as k
tends to infinity, and so there exists m ∈ N, such that x ∈ Se|m(Ft(e|m)) ⊂ Fu, and∣∣Se|m(Ft(e|m))

∣∣ < dist(x, Sf (Fu)). It follows that Se|m(Ft(e|m)) ∩ Sf (Fu) = ∅. Also
x ∈ [af , bf ], and as af , bf ∈ Sf (Fu), dist(x, Sf (Fu)) 6 x − af and dist(x, Sf (Fu)) 6
bf − x which means Se|m(Ft(e|m)) ⊂ [af , bf ] = Sf (Iu). In summary,

(Se|m(Ft(e|m)) ∪ Sf (Fu)) ⊂ (Fu ∩ Sf (Iu)), (7.1)

where the union on the left hand side is disjoint.
By Theorem 2.1, Hs(Se|m(Ft(e|m))) = rse|mH

s(Ft(e|m)) > 0, which we use to derive
a contradiction as follows

(bf − af )s = Hs(Fu ∩ Sf (Iu)) (by part(a))

> Hs(Se|m(Ft(e|m)) ∪ Sf (Fu)) (by Equation (7.1))

= Hs(Se|m(Ft(e|m))) +Hs(Sf (Fu)) (the union is disjoint)

> Hs(Sf (Fu))

= (bf − af )s (by part (a)).
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The next inequality can be verified using calculus.

Lemma 7.2. For x, z > 0, y > 0 and 0 < p < 1,

(x+ y + z)p < (x+ y)p + (y + z)p − yp.

Lemma 7.3. Let
(
V,E∗, i, t, r, (R, | |)v∈V , (Se)e∈E1

)
be any directed graph IFS for

which the OSC holds. For the attractor Fu at the vertex u, let s = dimH Fu and
{au, bu} ⊂ Fu ⊂ Iu = [au, bu]. Let Sf : R → R, Sg : R → R, be any two distinct
similarities with contracting similarity ratios 0 < rf , rg < 1.

If Sf (Fu) ⊂ Fu, Sg(Fu) ⊂ Fu, and Hs(Fu) = |Iu|s, then exactly one of the
following three statements occurs,

(a) Sf (Iu) ∩ Sg(Iu) = ∅, which implies Sf (Fu) ∩ Sg(Fu) = ∅,
(b) Sf (Iu) ⊂ Sg(Iu), which implies Sf (Fu) ⊂ Sg(Fu),

(c) Sg(Iu) ⊂ Sf (Iu), which implies Sg(Fu) ⊂ Sf (Fu).

Proof. This is similar to the claim in the proof of Theorem 4.1, [9].
There are just five possibilities for the intervals Sf (Iu) = [af , bf ], Sg(Iu) = [ag, bg],

(a) [af , bf ]∩ [ag, bg] = ∅, (b) [af , bf ] ⊂ [ag, bg] , (c) [ag, bg] ⊂ [af , bf ] ,

(d) af < ag 6 bf < bg, (e) ag < af 6 bg < bf .

First we prove that the situation in (d) cannot happen.

(bg − af )s > Hs(Fu ∩ [af , bg]) (by Corollary 3.6(a))

= Hs(Fu ∩ [af , bf ]) +Hs(Fu ∩ [ag, bg])

−Hs(Fu ∩ [ag, bf ]) (a property of the measure)

= Hs(Fu ∩ Sf (Iu)) +Hs(Fu ∩ Sg(Iu))
−Hs(Fu ∩ [ag, bf ]),

> (bf − af )s + (bg − ag)s − (bf − ag)s (by Lemma 7.1(a)

and Corollary 3.6(a))

> (bg − af )s.

The last inequality is obtained by putting x = ag − af > 0, y = bf − ag > 0, and
z = bg−bf > 0 in Lemma 7.2. This contradiction shows that (d) cannot occur and a
similar argument can clearly be constructed to prove that (e) cannot happen either.
Since Sf 6= Sg, exactly one of (a), (b), or (c) must occur. It only remains to prove
the implications in the statement of the lemma.

That Sf (Iu) ∩ Sg(Iu) = ∅ implies Sf (Fu) ∩ Sg(Fu) = ∅ follows immediately as
Sf (Fu) ⊂ Sf (Iu) and Sg(Fu) ⊂ Sg(Iu).

To see that Sf (Iu) ⊂ Sg(Iu) implies Sf (Fu) ⊂ Sg(Fu) we apply Lemma 7.1(b),
to obtain Sf (Fu) = Fu ∩ Sf (Iu) ⊂ Fu ∩ Sg(Iu) = Sg(Fu).

Similarly, that Sg(Iu) ⊂ Sf (Iu) implies Sg(Fu) ⊂ Sf (Fu) also follows immediately
by Lemma 7.1(b), since Sg(Fu) = Fu ∩ Sg(Iu) ⊂ Fu ∩ Sf (Iu) = Sf (Fu).
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We remind the reader that in the statements of Theorems 7.4 and 7.5 that follow,
the 2-vertex IFS (on the unit interval) of Figure 4.1 refers to Figure 4.1 but with
au, bu, av, and bv being assigned the specific values au = av = 0 and bu = bv = 1, so
that Iu = Iv = [0, 1] and |Iu| = |Iv| = 1, with the contracting similarity ratios and
similarities as given in Equations (4.13) and (4.14).

Theorem 7.4. For the 2-vertex IFS (on the unit interval) of Figure 4.1, suppose
conditions (1), (2) and (3) of Theorem 4.6 all hold, so that Hs(Fu) = |Iu|s = 1,
and suppose also that the set {gu, gv, a, b, c, d} ⊂ R+ is multiplicatively rationally
independent.

Then the attractor at the vertex u, Fu, is not the attractor of any standard (1-
vertex) IFS, defined on R, with or without separation conditions.

Proof. For a contradiction we suppose Fu is the attractor of a 1-vertex IFS, so Fu
will satisfy an invariance equation of the form

Fu =
n⋃
i=1

Si(Fu), (7.2)

for some n > 2. If Sj(Iu) ∩ Sk(Iu) 6= ∅ for any j 6= k, 1 6 j, k 6 n, then by
Lemma 7.3, either Sj(Iu) ⊂ Sk(Iu), with Sj(Fu) ⊂ Sk(Fu), or Sk(Iu) ⊂ Sj(Iu), with
Sk(Fu) ⊂ Sj(Fu). Without loss of generality suppose Sj(Fu) ⊂ Sk(Fu), then we may
rewrite Equation (7.2) as

Fu =
n⋃
i=1
i 6=j

Si(Fu).

We may continue in this way, if necessary, relabelling and reducing the number of
similarities n in Equation (7.2) to m, 2 6 m 6 n, with

Fu =
m⋃
i=1

Si(Fu),

where Sj(Iu) ∩ Sk(Iu) = ∅ for all 1 6 j, k 6 m, j 6= k. That is Fu is the attractor
of a 1-vertex IFS that satisfies the CSSC. Because the set {gu, gv, a, b, c, d} is multi-
plicatively rationally independent no such 1-vertex IFS exists by Corollary 6.4. This
is the required contradiction.

Theorem 7.5. For the 2-vertex IFS (on the unit interval) of Figure 4.1, but with
b = d, suppose conditions (1), (2) and (3) of Theorem 4.6 all hold, so that Hs(Fu) =
|Iu|s = 1, and suppose also that the set {gu, gv, a, b, c} ⊂ R+ is multiplicatively
rationally independent.

Then the attractor at the vertex u, Fu, is not the attractor of any standard (1-
vertex) IFS, defined on R, with or without separation conditions.

Proof. The proof is the same as that given for Theorem 7.4, except we apply Corol-
lary 6.2 in place of Corollary 6.4.
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Figure 7.1: Level-k intervals for 0 6 k 6 4.

We now give a specific example to which we apply Theorem 7.5. Consider the
following parameters for the 2-vertex IFS (on the unit interval) of Figure 4.1, with
a = 1

4
, gu = 5

12
, b = d = 1

3
, c = 1

7
, and gv = 11

21
. The Hausdorff dimension can be

calculated as s = 0.5147069928, and hv
hu

= 0.8978943038 < 1. Also (a+gu)(|Iu|s−as)
bas

=
2.082389923 > 1, so conditions (1), (2) and (3) of Theorem 4.6 all hold, which means
Hs(Fu) = |Iu|s = 1 and Hs(Fv) = 0.8978943038.

The set {gu, gv, a, b, c} =
{

5
12
, 11
21
, 1
4
, 1
3
, 1
7

}
, is multiplicatively rationally indepen-

dent. Theorem 7.5 now ensures that the attractor Fu, at the vertex u, is not the
attractor of any standard (1-vertex) IFS. Figure 7.1 illustrates the level-k intervals,
for 0 6 k 6 4, for this particular example.
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