2,460 research outputs found

    On the convergence of mirror descent beyond stochastic convex programming

    Get PDF
    In this paper, we examine the convergence of mirror descent in a class of stochastic optimization problems that are not necessarily convex (or even quasi-convex), and which we call variationally coherent. Since the standard technique of "ergodic averaging" offers no tangible benefits beyond convex programming, we focus directly on the algorithm's last generated sample (its "last iterate"), and we show that it converges with probabiility 11 if the underlying problem is coherent. We further consider a localized version of variational coherence which ensures local convergence of stochastic mirror descent (SMD) with high probability. These results contribute to the landscape of non-convex stochastic optimization by showing that (quasi-)convexity is not essential for convergence to a global minimum: rather, variational coherence, a much weaker requirement, suffices. Finally, building on the above, we reveal an interesting insight regarding the convergence speed of SMD: in problems with sharp minima (such as generic linear programs or concave minimization problems), SMD reaches a minimum point in a finite number of steps (a.s.), even in the presence of persistent gradient noise. This result is to be contrasted with existing black-box convergence rate estimates that are only asymptotic.Comment: 30 pages, 5 figure

    On the Regularizing Property of Stochastic Gradient Descent

    Get PDF
    Stochastic gradient descent is one of the most successful approaches for solving large-scale problems, especially in machine learning and statistics. At each iteration, it employs an unbiased estimator of the full gradient computed from one single randomly selected data point. Hence, it scales well with problem size and is very attractive for truly massive dataset, and holds significant potentials for solving large-scale inverse problems. In the recent literature of machine learning, it was empirically observed that when equipped with early stopping, it has regularizing property. In this work, we rigorously establish its regularizing property (under \textit{a priori} early stopping rule), and also prove convergence rates under the canonical sourcewise condition, for minimizing the quadratic functional for linear inverse problems. This is achieved by combining tools from classical regularization theory and stochastic analysis. Further, we analyze the preasymptotic weak and strong convergence behavior of the algorithm. The theoretical findings shed insights into the performance of the algorithm, and are complemented with illustrative numerical experiments.Comment: 22 pages, better presentatio
    • …
    corecore