15 research outputs found

    Kinematic and dynamic analysis of mobile robot

    Get PDF
    Master'sMASTER OF SCIENC

    Analysis, design, and control of an omnidirectional mobile robot in rough terrain

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.Includes bibliographical references (leaves 49-52).An omnidirectional mobile robot is able, kinematically, to move in any direction regardless of current pose. To date, nearly all designs and analyses of omnidirectional mobile robots have considered the case of motion on flat, smooth terrain. In this thesis, an investigation of the suitability of an active split offset caster driven omnidirectional mobile robot for use in rough terrain is presented. Kinematic and geometric properties of the drive mechanism are investigated along with guidelines for designing the robot. An optimization method is implemented to explore the design space. These analyses can be used as design guidelines for development of an omnidirectional mobile robot that can operate in unstructured environments. A simple kinematic controller that considers the effects of terrain unevenness via an estimate of the wheel-terrain contact angles is also presented. It is shown in simulation that under the proposed control method, near-omnidirectional tracking performance is possible even in rough, uneven terrain.by Martin Richard Udengaard.S.M

    Front and Back Movement Analysis of a Triangle-Structured Three-Wheeled Omnidirectional Mobile Robot by Varying the Angles between Two Selected Wheels

    Get PDF
    Omnidirectional robots can move in all directions without steering their wheels and it can rotate clockwise and counterclockwise with reference to their axis. In this paper, we focused only on front and back movement, to analyse the square- and triangle-structured omnidirectional robot movements. An omnidirectional mobile robot shows different performances with the different number of wheels and the omnidirectional mobile robot’s chassis design. Research is going on in this field to improve the accurate movement capability of omnidirectional mobile robots. This paper presents a design of a unique device of Angle Variable Chassis (AVC) for linear movement analysis of a three-wheeled omnidirectional mobile robot (TWOMR), at various angles (θ) between the wheels. Basic mobility algorithm is developed by varying the angles between the two selected omnidirectional wheels in TWOMR. The experiment is carried out by varying the angles (θ = 30°, 45°, 60°, 90°, and 120°) between the two selected omniwheels and analysing the movement of TWOMR in forward direction and reverse direction on a smooth cement surface. Respectively, it is compared to itself for various angles (θ), to get its advantages and weaknesses. The conclusion of the paper provides effective movement of TWOMR at a particular angle (θ) and also the application of TWOMR in different situations

    DESIGN AND DEVELOPMENT OF AN OMNIDIRECTIONAL MOBILE BASE FOR A SOCIAL ROBOT

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Design of a Mobile Robotic Platform with Variable Footprint

    Get PDF
    This thesis presents an in-depth investigation to determine the most suitable mobile base design for a powerful and dynamic robotic manipulator. It details the design process of such a mobile platform for use in an indoor human environment that is to carry a two-arm upper-body humanoid manipulator system. Through systematic dynamics analysis, it was determined that a variable footprint holonomic wheeled mobile platform is the design of choice for such an application. Determining functional requirements and evaluating design options is performed for the platform’s general configuration, geometry, locomotion system, suspension, and propulsion, with a particularly in-depth evaluation of the problem of overcoming small steps. Other aspects such as processing, sensing and the power system are dealt with sufficiently to ensure the feasibility of the overall proposed design. The control of the platform is limited to that necessary to determine the appropriate mechanical components. Simulations are performed to investigate design problems and verify performance. A basic CAD model of the system is included for better design visualization. The research carried out in this thesis was performed in cooperation with the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt)’s Robotics and Mechatronics Institute (DLR RM). The DLR RM is currently utilizing the findings of this research to finish the development of the platform with a target completion date of May 2008

    Unlimited-wokspace teleoperation

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 100-105)Text in English; Abstract: Turkish and Englishxiv, 109 leavesTeleoperation is, in its brief description, operating a vehicle or a manipulator from a distance. Teleoperation is used to reduce mission cost, protect humans from accidents that can be occurred during the mission, and perform complex missions for tasks that take place in areas which are difficult to reach or dangerous for humans. Teleoperation is divided into two main categories as unilateral and bilateral teleoperation according to information flow. This flow can be configured to be in either one direction (only from master to slave) or two directions (from master to slave and from slave to master). In unlimited-workspace teleoperation, one of the types of bilateral teleoperation, mobile robots are controlled by the operator and environmental information is transferred from the mobile robot to the operator. Teleoperated vehicles can be used in a variety of missions in air, on ground and in water. Therefore, different constructional types of robots can be designed for the different types of missions. This thesis aims to design and develop an unlimited-workspace teleoperation which includes an omnidirectional mobile robot as the slave system to be used in further researches. Initially, an omnidirectional mobile robot was manufactured and robot-operator interaction and efficient data transfer was provided with the established communication line. Wheel velocities were measured in real-time by Hall-effect sensors mounted on robot chassis to be integrated in controllers. A dynamic obstacle detection system, which is suitable for omnidirectional mobility, was developed and two obstacle avoidance algorithms (semi-autonomous and force reflecting) were created and tested. Distance information between the robot and the obstacles was collected by an array of sensors mounted on the robot. In the semi-autonomous teleoperation scenario, distance information is used to avoid obstacles autonomously and in the force-reflecting teleoperation scenario obstacles are informed to the user by sending back the artificially created forces acting on the slave robot. The test results indicate that obstacle avoidance performance of the developed vehicle with two algorithms is acceptable in all test scenarios. In addition, two control models were developed (kinematic and dynamic control) for the local controller of the slave robot. Also, kinematic controller was supported by gyroscope

    Design and Development of an Automated Mobile Manipulator for Industrial Applications

    Get PDF
    This thesis presents the modeling, control and coordination of an automated mobile manipulator. A mobile manipulator in this investigation consists of a robotic manipulator and a mobile platform resulting in a hybrid mechanism that includes a mobile platform for locomotion and a manipulator arm for manipulation. The structural complexity of a mobile manipulator is the main challenging issue because it includes several problems like adapting a manipulator and a redundancy mobile platform at non-holonomic constraints. The objective of the thesis is to fabricate an automated mobile manipulator and develop control algorithms that effectively coordinate the arm manipulation and mobility of mobile platform. The research work starts with deriving the motion equations of mobile manipulators. The derivation introduced here makes use of motion equations of robot manipulators and mobile platforms separately, and then integrated them as one entity. The kinematic analysis is performed in two ways namely forward & inverse kinematics. The motion analysis is performed for various WMPs such as, Omnidirectional WMP, Differential three WMP, Three wheeled omni-steer WMP, Tricycle WMP and Two steer WMP. From the obtained motion analysis results, Differential three WMP is chosen as the mobile platform for the developed mobile manipulator. Later motion analysis is carried out for 4-axis articulated arm. Danvit-Hartenberg representation is implemented to perform forward kinematic analysis. Because of this representation, one can easily understand the kinematic equation for a robotic arm. From the obtained arm equation, Inverse kinematic model for the 4-axis robotic manipulator is developed. Motion planning of an intelligent mobile robot is one of the most vital issues in the field of robotics, which includes the generation of optimal collision free trajectories within its work space and finally reaches its target position. For solving this problem, two evolutionary algorithms namely Particle Swarm Optimization (PSO) and Artificial Immune System (AIS) are introduced to move the mobile platform in intelligent manner. The developed algorithms are effective in avoiding obstacles, trap situations and generating optimal paths within its unknown environments. Once the robot reaches its goal (within the work space of the manipulator), the manipulator will generate its trajectories according to task assigned by the user. Simulation analyses are performed using MATLAB-2010 in order to validate the feasibility of the developed methodologies in various unknown environments. Additionally, experiments are carried out on an automated mobile manipulator. ATmega16 Microcontrollers are used to enable the entire robot system movement in desired trajectories by means of robot interface application program. The control program is developed in robot software (Keil) to control the mobile manipulator servomotors via a serial connection through a personal computer. To support the proposed control algorithms both simulation and experimental results are presented. Moreover, validation of the developed methodologies has been made with the ER-400 mobile platform

    MAP - A Mobile Agile Printer Robot for on-site Construction

    Get PDF
    In this paper, we present a Mobile Agile Printer (MAP) construction robot; a highly agile, 4-legged, omnidirectional robot capable of 3D printing large structures. To overcome dynamic challenges when operating within an outdoors construction site, MAP incorporates a high-DoF 3D printing system connected to a mobile platform with novel features designed to enable disturbance rejection and live adaption to the robot's pose. In doing so, we demonstrate the benefits of designing construction robots with a focus on agility, a compact working volume and ability to operate within a potentially unlimited workspace. Performance tests were conducted showing smooth omni-directional motion as a key requirement for maintaining low 3D printing trajectory deviations over a large volume. In doing so, we show that MAP has the ability to construct in new ways more sensitive to its environment, context and concurrent on-site operations
    corecore