232,069 research outputs found

    Isomorphism

    Get PDF
    Isomorphism: Initially referring to the structuralist, in particular glossematic, hypothesis that the expression and meaning of linguistic signs show structural parallelisms, the term isomorphism is used in current linguistic theory to designate the one-to-one correspondence between expression and meaning

    On the Complexity of Polytope Isomorphism Problems

    Full text link
    We show that the problem to decide whether two (convex) polytopes, given by their vertex-facet incidences, are combinatorially isomorphic is graph isomorphism complete, even for simple or simplicial polytopes. On the other hand, we give a polynomial time algorithm for the combinatorial polytope isomorphism problem in bounded dimensions. Furthermore, we derive that the problems to decide whether two polytopes, given either by vertex or by facet descriptions, are projectively or affinely isomorphic are graph isomorphism hard. The original version of the paper (June 2001, 11 pages) had the title ``On the Complexity of Isomorphism Problems Related to Polytopes''. The main difference between the current and the former version is a new polynomial time algorithm for polytope isomorphism in bounded dimension that does not rely on Luks polynomial time algorithm for checking two graphs of bounded valence for isomorphism. Furthermore, the treatment of geometric isomorphism problems was extended.Comment: 16 pages; to appear in: Graphs and Comb.; replaces our paper ``On the Complexity of Isomorphism Problems Related to Polytopes'' (June 2001

    Beating the Generator-Enumeration Bound for pp-Group Isomorphism

    Full text link
    We consider the group isomorphism problem: given two finite groups G and H specified by their multiplication tables, decide if G cong H. For several decades, the n^(log_p n + O(1)) generator-enumeration bound (where p is the smallest prime dividing the order of the group) has been the best worst-case result for general groups. In this work, we show the first improvement over the generator-enumeration bound for p-groups, which are believed to be the hard case of the group isomorphism problem. We start by giving a Turing reduction from group isomorphism to n^((1 / 2) log_p n + O(1)) instances of p-group composition-series isomorphism. By showing a Karp reduction from p-group composition-series isomorphism to testing isomorphism of graphs of degree at most p + O(1) and applying algorithms for testing isomorphism of graphs of bounded degree, we obtain an n^(O(p)) time algorithm for p-group composition-series isomorphism. Combining these two results yields an algorithm for p-group isomorphism that takes at most n^((1 / 2) log_p n + O(p)) time. This algorithm is faster than generator-enumeration when p is small and slower when p is large. Choosing the faster algorithm based on p and n yields an upper bound of n^((1 / 2 + o(1)) log n) for p-group isomorphism.Comment: 15 pages. This is an updated and improved version of the results for p-groups in arXiv:1205.0642 and TR11-052 in ECC

    Good potentials for almost isomorphism of countable state Markov shifts

    Full text link
    Almost isomorphism is an equivalence relation on countable state Markov shifts which provides a strong version of Borel conjugacy; still, for mixing SPR shifts, entropy is a complete invariant of almost isomorphism. In this paper, we establish a class of potentials on countable state Markov shifts whose thermodynamic formalism is respected by almost isomorphism

    Reduction Techniques for Graph Isomorphism in the Context of Width Parameters

    Full text link
    We study the parameterized complexity of the graph isomorphism problem when parameterized by width parameters related to tree decompositions. We apply the following technique to obtain fixed-parameter tractability for such parameters. We first compute an isomorphism invariant set of potential bags for a decomposition and then apply a restricted version of the Weisfeiler-Lehman algorithm to solve isomorphism. With this we show fixed-parameter tractability for several parameters and provide a unified explanation for various isomorphism results concerned with parameters related to tree decompositions. As a possibly first step towards intractability results for parameterized graph isomorphism we develop an fpt Turing-reduction from strong tree width to the a priori unrelated parameter maximum degree.Comment: 23 pages, 4 figure
    • …
    corecore