9,931 research outputs found

    On the Generalised Colouring Numbers of Graphs that Exclude a Fixed Minor

    Full text link
    The generalised colouring numbers colr(G)\mathrm{col}_r(G) and wcolr(G)\mathrm{wcol}_r(G) were introduced by Kierstead and Yang as a generalisation of the usual colouring number, and have since then found important theoretical and algorithmic applications. In this paper, we dramatically improve upon the known upper bounds for generalised colouring numbers for graphs excluding a fixed minor, from the exponential bounds of Grohe et al. to a linear bound for the rr-colouring number colr\mathrm{col}_r and a polynomial bound for the weak rr-colouring number wcolr\mathrm{wcol}_r. In particular, we show that if GG excludes KtK_t as a minor, for some fixed t≥4t\ge4, then colr(G)≤(t−12) (2r+1)\mathrm{col}_r(G)\le\binom{t-1}{2}\,(2r+1) and wcolr(G)≤(r+t−2t−2)⋅(t−3)(2r+1)∈O(r t−1)\mathrm{wcol}_r(G)\le\binom{r+t-2}{t-2}\cdot(t-3)(2r+1)\in\mathcal{O}(r^{\,t-1}). In the case of graphs GG of bounded genus gg, we improve the bounds to colr(G)≤(2g+3)(2r+1)\mathrm{col}_r(G)\le(2g+3)(2r+1) (and even colr(G)≤5r+1\mathrm{col}_r(G)\le5r+1 if g=0g=0, i.e. if GG is planar) and wcolr(G)≤(2g+(r+22)) (2r+1)\mathrm{wcol}_r(G)\le\Bigl(2g+\binom{r+2}{2}\Bigr)\,(2r+1).Comment: 21 pages, to appear in European Journal of Combinatoric

    Computing metric hulls in graphs

    Full text link
    We prove that, given a closure function the smallest preimage of a closed set can be calculated in polynomial time in the number of closed sets. This confirms a conjecture of Albenque and Knauer and implies that there is a polynomial time algorithm to compute the convex hull-number of a graph, when all its convex subgraphs are given as input. We then show that computing if the smallest preimage of a closed set is logarithmic in the size of the ground set is LOGSNP-complete if only the ground set is given. A special instance of this problem is computing the dimension of a poset given its linear extension graph, that was conjectured to be in P. The intent to show that the latter problem is LOGSNP-complete leads to several interesting questions and to the definition of the isometric hull, i.e., a smallest isometric subgraph containing a given set of vertices SS. While for ∣S∣=2|S|=2 an isometric hull is just a shortest path, we show that computing the isometric hull of a set of vertices is NP-complete even if ∣S∣=3|S|=3. Finally, we consider the problem of computing the isometric hull-number of a graph and show that computing it is Σ2P\Sigma^P_2 complete.Comment: 13 pages, 3 figure

    Burning a Graph is Hard

    Full text link
    Graph burning is a model for the spread of social contagion. The burning number is a graph parameter associated with graph burning that measures the speed of the spread of contagion in a graph; the lower the burning number, the faster the contagion spreads. We prove that the corresponding graph decision problem is \textbf{NP}-complete when restricted to acyclic graphs with maximum degree three, spider graphs and path-forests. We provide polynomial time algorithms for finding the burning number of spider graphs and path-forests if the number of arms and components, respectively, are fixed.Comment: 20 Pages, 4 figures, presented at GRASTA-MAC 2015 (October 19-23rd, 2015, Montr\'eal, Canada
    • …
    corecore