49 research outputs found

    Isabelle/PIDE as Platform for Educational Tools

    Full text link
    The Isabelle/PIDE platform addresses the question whether proof assistants of the LCF family are suitable as technological basis for educational tools. The traditionally strong logical foundations of systems like HOL, Coq, or Isabelle have so far been counter-balanced by somewhat inaccessible interaction via the TTY (or minor variations like the well-known Proof General / Emacs interface). Thus the fundamental question of math education tools with fully-formal background theories has often been answered negatively due to accidental weaknesses of existing proof engines. The idea of "PIDE" (which means "Prover IDE") is to integrate existing provers like Isabelle into a larger environment, that facilitates access by end-users and other tools. We use Scala to expose the proof engine in ML to the JVM world, where many user-interfaces, editor frameworks, and educational tools already exist. This shall ultimately lead to combined mathematical assistants, where the logical engine is in the background, without obstructing the view on applications of formal methods, formalized mathematics, and math education in particular.Comment: In Proceedings THedu'11, arXiv:1202.453

    A Logic-Independent IDE

    Full text link
    The author's MMT system provides a framework for defining and implementing logical systems. By combining MMT with the jEdit text editor, we obtain a logic-independent IDE. The IDE functionality includes advanced features such as context-sensitive auto-completion, search, and change management.Comment: In Proceedings UITP 2014, arXiv:1410.785

    PIDE as front-end technology for Coq

    Full text link
    Isabelle/PIDE is the current Prover IDE technology for Isabelle. It has been developed in ML and Scala in the past 4-5 years for this particular proof assistant, but with an open mind towards other systems. PIDE is based on an asynchronous document model, where the prover receives edits continuously and updates its internal state accordingly. The interpretation of edits and the policies for proof document processing are determined by the prover. The editor front-end merely takes care of visual rendering of formal document content. Here we report on an experiment to connect Coq to the PIDE infrastructure of Isabelle. This requires to re-implement the core PIDE protocol layer of Isabelle/ML in OCaml. The payload for semantic processing of proof document content is restricted to lexical analysis in the sense of existing CoqIde functionality. This is sufficient as proof-of-concept for PIDE connectivity. Actual proof processing is then a matter of improving Coq towards timeless and stateless proof processing, independently of PIDE technicalities. The implementation worked out smoothly and required minimal changes to the refined PIDE architecture of Isabelle2013. This experiment substantiates PIDE as general approach to prover interaction. It illustrates how other provers of the greater ITP family can participate by following similar reforms of the classic TTY loop as was done for Isabelle in the past few years

    Coqoon - An IDE for Interactive Proof Development in Coq

    Get PDF

    Interactive Simplifier Tracing and Debugging in Isabelle

    Full text link
    The Isabelle proof assistant comes equipped with a very powerful tactic for term simplification. While tremendously useful, the results of simplifying a term do not always match the user's expectation: sometimes, the resulting term is not in the form the user expected, or the simplifier fails to apply a rule. We describe a new, interactive tracing facility which offers insight into the hierarchical structure of the simplification with user-defined filtering, memoization and search. The new simplifier trace is integrated into the Isabelle/jEdit Prover IDE.Comment: Conferences on Intelligent Computer Mathematics, 201

    Coqoon An IDE for interactive proof development in Coq

    Get PDF
    International audienceUser interfaces for interactive proof assistants have always lagged behind those for mainstream programming languages. Whereas integrated development environments—IDEs—have support for features like project management, version control, dependency analysis and in-cremental project compilation, " IDE " s for proof assistants typically only operate on files in isolation, relying on external tools to integrate those files into larger projects. In this paper we present Coqoon, an IDE for Coq developments integrated into Eclipse. Coqoon manages proofs as projects rather than isolated source files, and compiles these projects using the Eclipse common build system. Coqoon takes advantage of the latest features of Coq, including asynchronous and parallel processing of proofs, and—when used together with a third-party OCaml extension for Eclipse—can even be used to work on large developments containing Coq plugins

    Coqoon

    Get PDF
    International audienceUser interfaces for interactive proof assistants have always lagged behind those for mainstream programming languages. Whereas integrated development environments (IDEs) have support for features like project management, version control, dependency analysis and incremental project compilation, " IDE " s for proof assistants typically only operate on files in isolation, relying on external tools to integrate those files into larger projects. In this paper we present Coqoon, an IDE for Coq projects integrated into Eclipse. Coqoon manages proofs as projects rather than isolated source files, and compiles these projects using the Eclipse common build system. Coqoon takes advantage of the latest features of Coq, including asynchronous and parallel processing of proofs, and—when used together with a third-party OCaml extension for Eclipse—can even be used to work on large developments containing Coq plugins
    corecore