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Coqoon

An IDE for interactive proof development in Coq

Alexander Faithfull1, Jesper Bengtson1, Enrico Tassi2, and Carst Tankink2?

1 IT University of Copenhagen
2 Inria - France

Abstract. User interfaces for interactive proof assistants have always
lagged behind those for mainstream programming languages. Whereas
integrated development environments—IDEs—have support for features
like project management, version control, dependency analysis and in-
cremental project compilation, “IDE”s for proof assistants typically only
operate on files in isolation, relying on external tools to integrate those
files into larger projects. In this paper we present Coqoon, an IDE for
Coq developments integrated into Eclipse. Coqoon manages proofs as
projects rather than isolated source files, and compiles these projects
using the Eclipse common build system. Coqoon takes advantage of the
latest features of Coq, including asynchronous and parallel processing of
proofs, and—when used together with a third-party OCaml extension
for Eclipse—can even be used to work on large developments containing
Coq plugins.

1 Introduction

In the last decade, computer-aided proof development has been gaining mo-
mentum. Interactive proof assistants allow their users to state a mathematical
theorem in a language that the system understands and then prove that theo-
rem within the system. As long as the proof assistant’s verification code is free
from bugs, this guarantees that all proofs are actually correct, that no details
have been overlooked, and that no mistakes were made. Mechanizing proofs in
this way makes very large proofs feasible and protects against subtle and hard-
to-notice human errors. Two recent milestones in computer science include the
verification of an optimising C compiler [6] and of a micro-kernel [17]. Proof as-
sistants have also been used to verify advanced results in mathematics, such as
the Odd Order Theorem, using Coq [12], and the proof of the Kepler conjecture,
using HOL-Light and Isabelle [14].

Meanwhile, on the other side of the great chasm between theory and practice,
software developers too have come to appreciate computer assistance as they
work. For a developer, though, that assistance comes not in the form of a proof
assistant, but of an integrated development environment (IDE).
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The IDE combines many important tools of the trade—such as editors, com-
pilers, refactorers, profilers, debuggers, and project and release managers—into
a single unified toolbox for working with code. At a glance, the developer has
an overview of every aspect of a project, and the repercussions of changes in
one area can be shown in every other affected area, allowing the developer to
make any necessary corrections. Many IDEs can even abstract away the build
process entirely, automatically inferring the relationships between source files
and libraries and rebuilding them when necessary.

The workflows of interactive proof assistants are sufficiently similar to con-
ventional programming languages that one might expect IDEs to exist for them
as well, but this is not the case. Even though proof assistants are gaining in pop-
ularity, there are still no real IDEs for them—none of them are truly integrated.
Coq is one of the most widely-used proof assistants available, but its proofs are
most often written using either Proof General or CoqIDE; these specialised text
editors operate only on individual files, leaving project management entirely to
developers. Projects are typically built using Makefiles, which in practice require
a POSIX-like environment; file dependencies are supported via command-line
tools; and complex inter-project dependencies are not supported at all, leaving
the work of building and linking projects together up to the user. Moreover,
both ProofGeneral and CoqIDE have a workflow, often referred to as the water-
fall model, in which the editor is only aware of the state at one specific point: to
view the state elsewhere, the user must either execute all commands up to the
desired point or explicitly revert to an earlier point in the document, throwing
away all the computations in the process. This workflow is not only alien to soft-
ware developers, who are used to being able to edit their files at arbitrary points
and receive immediate feedback from the IDE on what effect these changes had
on the rest of their development, it is also very slow (although upcoming versions
of CoqIDE improve this situation somewhat).

We argue that the lack of tool support for proof assistants is to the detriment
of both theoreticians and software developers with an interest in verification.
Requiring that developers learn an old-fashioned workflow in order to try out
formal methods is unquestionably a deterrent, but that workflow is also a waste
of time and effort for those who have grown accustomed to it. Integration and
automation have made life easier for programmers: why should the same not
also be true for proof authors?

In this paper we present Coqoon—an Eclipse-based IDE for proof develop-
ment using the Coq proof assistant. Coqoon includes support for Coq projects,
much like Eclipse’s built-in support for Java projects: users can create Coq
projects, structure these projects using folder hierarchies, and add Coq source
files to these folders, and the Eclipse automatic build system will keep track of
the project dependencies behind the scenes. Whenever a file is changed, moved,
or renamed, everything that depends on it is automatically recompiled, and any
errors are reported to the user.

Coqoon does away with the waterfall model, instead allowing the user to make
changes anywhere in a file—and automatically and asynchronously reproving

2



only the parts that are affected by that change. In this way, Coqoon behaves a
lot more like an IDE that software developers are familiar with than the tools
available to Coq developers today.

Coqoon is also an integrated development environment in the truest sense of
the word. Eclipse has a wide variety of plugins available, ranging from version
control plugins like EGit to entire development environments like OcaIDE for
OCaml, which can be used alongside Coqoon. The combination of Coqoon and
OcaIDE is particularly useful, as it brings support for complex Coq developments
that contain both proofs and OCaml plugins.

Coqoon depends on features added to Coq in version 8.5 (which, at the
time of writing, is available in beta). Architectural changes to Coq 8.5 allow
it to support Wenzel’s PIDE library for asynchronous proof developments [25],
which powers Coqoon’s replacement for the waterfall model. Coq 8.5 also adds
a two-step compilation process, known as the quick compilation chain, that can
optionally produce .vio files in place of standard Coq .vo libraries; this new
format produces larger, faster files whose proofs are unchecked, but which can
later be efficiently compiled into the traditional format by checking the remaining
proofs in parallel.

As a test case, we have imported the mechanised proof of the Odd Order
Theorem into Coqoon, which is one of the largest Coq 8.5-compatible develop-
ments available. Previous versions of this project took over two hours to compile,
but, using the quick compilation chain, the project can be compiled into .vio

form in just seven minutes, and then into .vo form in a further twenty min-
utes. Coqoon is the first IDE to include native support for the quick compilation
chain—indeed, no other IDE for Coq has an integrated build system—which
makes it possible to work with even the most complex projects at speeds that
were hitherto unimaginable.

We have also adapted Pierce’s course on Software Foundations to be com-
patible with this version. This development contains plenty of exercises that
demonstrate a wide variety of features of Coq, and can be used to try out Co-
qoon’s capabilities in a smaller setting than the Odd-Order Theorem.

Download links and installation instructions for Coqoon, along with pre-
packaged example projects, can be found at
https://coqoon.github.io/tacas2016.

2 Coqoon, structured projects, and the build system

Coqoon is a family of plugins for the Eclipse framework that together implement
an IDE for Coq developments. It has support for structuring these developments
easily using Eclipse workspace projects, folders, and files, and for automatically
managing the verification and build processes in the face of changed dependen-
cies. To allow more interactive development of proof scripts, Coqoon processes
them in the background, showing Coq feedback directly in the proof text editor
using idioms familiar to programmers (e.g., by underlining errors in red).
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Fig. 1: A screenshot of Coqoon, showing the project viewer, a Coq editor with
syntax highlighting, and the goal viewer. The progress bar at the bottom of the
screen shows the Coq project builder at work.

As Coqoon is implemented on top of the Eclipse framework, it interoperates
with other Eclipse components: version control plugins like EGit [9], for example,
can be used with Coqoon projects.

2.1 Structured projects

Coqoon provides a more structured environment than Coq programmers are
accustomed to. From the moment the user first creates a Coq project in Coqoon,
it already has a complete build system; Coq source code must be placed in
designated source folders, and when files start to depend on other files, they will
automatically be marked for recompilation when their dependencies are moved
or changed, even if those dependencies are in other projects. A progress bar—
visible at the bottom of Figure 1—displays the state of any build operations
scheduled by the builder.

This need for structure is not just the IDE being difficult: it is precisely
this structure that makes more sophisticated behaviour possible. The use of the
Coqoon integrated build system allows Coq projects to support dependencies on
other projects, or on external developments, whilst simultaneously freeing the
developer from the need to think about the build system and making it work on
all operating systems supported by Eclipse.
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2.2 The Coq model

Replacing unstructured collections of files with structured projects is a start, but
most IDEs go further. They transform source code files into a more structured
representation (known as a model), providing a higher-level way of searching and
manipulating code than simple operations on plain text. Eclipse’s Java model,
for example, presents Java documents as abstract syntax trees; nodes in the tree
that represent identifiers can also be “resolved” through the model to see what
they refer to in that particular context.

Coqoon provides a similar model for Coq code. Most Coq-specific operations
on files begin by using the Coq model to convert an Eclipse file handle into a Coq
model file handle, which presents an alternative view of the file as a sequence of
parsed and tagged Coq sentences. The model also serves as a central place to
cache these sequences, so files whose content has not changed do not need to be
reparsed.

In general, the goal of this model is to provide a useful, Coq-centric view
of the contents of an Eclipse project. Coq project handles, for example, have
methods for retrieving and modifying project configuration information, and
projects can be traversed using the visitor pattern [11] to find named lemmas
and definitions, making search algorithms easy to build.

The design of Coqoon’s Coq model is heavily based on that of Eclipse’s own
Java model, which has led to the internal use of some Java concepts in areas
where Coq lacks any particular convention: the Coqoon model considers projects
to consist of Java-style package roots (top-level source and output directories)
containing package fragments (those subdirectories of a root which contain source
and output files), for example, although the concept of a package is not one native
to Coq.

2.3 Coq interaction

Coqoon’s integrated Coq editor communicates using the PIDE library. Originally
developed for the Isabelle proof assistant, PIDE frees the user from having to
explicitly direct the prover to make progress through a source file. Proofs handled
by PIDE may be evaluated in parallel or out-of-order, and Coq’s state after the
evaluation of each sentence is saved, making it quick and easy to see how tactics
affect the state of a proof. Section 3 explains the operation of the PIDE protocol
in more detail.

When using PIDE, the operation of the prover in the background is trans-
parent to the user. Any status messages and goal information associated with a
command will automatically be displayed when the user moves the text cursor
onto it, and errors are highlighted when the user makes a mistake.

2.4 The Coq build process

When a Coq file is added to, modified in, or removed from a Coq project, the
integrated Coq builder is activated. The builder is responsible for compiling all
of a project’s Coq proofs into library files.
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Whenever the Coqoon builder is activated, Eclipse provides it with a sum-
mary of the changes to the project since the last activation. The builder then
uses the Coq model to extract the new dependency information from the changed
files; it then rebuilds all the changed files and their dependents in an appropri-
ate order, postponing the compilation of a file until its dependencies are also
up-to-date.

This behaviour is common to virtually all IDEs, and—although it is not
supported by existing Coq interfaces—many projects have built ad-hoc emula-
tions of it for themselves. At the time of writing, for example, the CompCert
project contains a pair of shell scripts—one for use with CoqIDE, and one for
use with Proof General—which compile the dependencies of a file, open it in the
appropriate editfOcaor, and recompile that file when the editor is subsequently
closed.

A second implementation As the integrated build system might conceivably
also be useful outside of Coqoon, we also provide a Python reimplementation of
it. This reimplementation is included by default in all Coqoon projects to make
it possible to work on them even in the absence of Eclipse.

Projects and hybrid projects

All Eclipse projects are collections of files coupled with Eclipse build system
metadata which expresses that project’s specific requirements. A Coqoon project
consists of Coq source code, information about the project’s internal structure
and its dependencies, and an instruction to the Eclipse build system explaining
that the project is a Coq development under the control of the Coqoon builder.

This mechanism is sufficiently general that a project’s metadata can have
multiple instructions for the Eclipse build system—for example, a Coq project
might declare that a bundled plugin is to be built with an OCaml builder.
Indeed, a copy of Eclipse equipped with Coqoon and OcaIDE, an OCaml IDE
for Eclipse[7], serves as a complete development environment for Coq projects
with OCaml plugins; section 4.1 describes such a scenario in more detail.

Project dependencies

The Coqoon builder uses a project’s load path to resolve the dependencies
present in that project’s source code, and also provides a user interface for ma-
nipulating those dependencies. This functionality is loosely inspired by the Java
class path management found in Eclipse Java projects.

Coqoon supports five different kinds of load path entries:

– folders in Eclipse projects that contain source code files;
– folders in Eclipse projects that contain compiled source code;
– other Coqoon projects in the Eclipse workspace;
– folders in the local file system containing projects neither built with nor

managed by Coqoon; and
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– “abstract” entries which are likely to be available everywhere but whose
location cannot be not known in advance, like the Coq standard library.

The builder calculates how each of these kinds of entry should be represented
in the Coq load path, and uses this information to resolve the dependencies of
each file in the project.

The dependency resolution process is sophisticated enough to recognize when
to prefer files that have yet to be compiled to files that are already available: if a
project contains a file called List.v, for example, then other files in that project
can safely depend on its compiled form by depending on List, even though the
Coq standard library contains an identically named file which could potentially
satisfy that dependency.

Abstract dependencies When Coqoon encounters an “abstract” entry, it
looks at that entry’s identifier and searches an internal registry for a class that
knows how to handle that identifier. These classes can then run arbitrary code
to resolve the identifier; for example, the handler for the Coq standard library
finds it by running a coqtop process with the -where option.

As this internal registry is also exposed through the standard Eclipse exten-
sion mechanism, it can also be used to add new kinds of dependencies to Coqoon.
We discuss one possible application of this technique in section 5.2.

Aggressive rebuilding

Coqoon’s internal dependency analysis behaves like that of make: when a file is
older than one of its dependencies, it becomes a candidate for recompilation. As
a result, making changes to a file with many transitive dependencies will trigger
the recompilation of many other files.

As Coq proofs do not have a clean separation between their externally-visible
interface and the internal implementation, this is the only safe way of ensuring
that changes to a fundamental proof are appropriately reflected throughout a
project. Coqoon offers two different mitigations to make this more palatable for
large developments: the builder can be configured to recompile projects only
when the user explicitly requests it, or it can be told to use the Coq 8.5 quick
compilation chain, speeding up compilation drastically by postponing the eval-
uation of proofs.

Neatness and namespaces

Coq developments do not typically have a clean separation between source and
output folders. In a simpler setting, the resulting clutter is merely annoying; in
an IDE, however, compiled libraries and other derived files are normally entirely
hidden from the user, which is a much harder task when these files are not
systematically separated from source code.

The Coqoon builder emulates the behaviour of the Java builder to provide
this separation: the Coq source file src/SoftwareFoundations/Basics.v, for
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example, is compiled into the library bin/SoftwareFoundations/Basics.vo,
the fully-qualified name of which would be SoftwareFoundations.Basics. Al-
though there are as yet no conventions for managing the Coq library namespace,
this approach is flexible enough to support any convention that might be chosen
in a future version of Coq.

3 PIDE: Coqoon’s interaction with Coq

PIDE is a middleware layer originally developed by Wenzel [25] to bridge the
gap between the Isabelle system, implemented in PolyML, and its user interface,
written in Java.
For both historical and technical reasons, many proof assistants are written in
a programming language that is a descendant of ML, a language conceived with
that particular application in mind. IDEs, on the other hand, are more usually
built atop industry-standard platforms like Java or .NET; a layer like PIDE is
thus necessary to enable provers to talk to the outside world.

3.1 PIDE in a nutshell

PIDE consists of a relatively prover-agnostic frontend library, implemented in
Scala, and a prover-specific backend in the prover’s own implementation language
(i.e., PolyML for Isabelle, or OCaml for Coq). These two components co-operate
to ensure that frontend and backend both agree on the content and structure
of the user’s document. As the backend has a complete view of the document,
it can evaluate that document however it sees fit, and its half of the PIDE
implementation will take care of relaying status messages and other feedback to
the frontend (and thus to the user). The frontend can also interrupt the backend
with an update to the document, or direct the backend to focus its attention on
a different region.

To bring PIDE support to Coq, Tankink wrote an OCaml implementation of
the PIDE backend for use with Coq 8.5, also making some minor changes to the
Scala library in the process [4]. Although Coqoon has benefited greatly from this
work, it was not carried out with Coqoon in mind—it was originally intended for
use with jEdit, a more limited text editor used as the main interface for Isabelle.

Even though jEdit and Eclipse are two very different environments, adding
PIDE support to Coqoon has required only minor changes to PIDE, which shows
that the library is not tied to one particular style of frontend.

4 Test cases

To assess the maturity of the tool we apply it to two Coq developments: the Odd
Order Theorem, a large formalization that comprises both Coq theories and a
Coq extension, and the widely used teaching course in Software Foundations by
Pierce.
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4.1 The Odd Order Theorem and the Math.Comp. library

The Odd Order Theorem by Feit and Thompson is a masterpiece of modern
mathematics for which its last author received the Fields medal in 1970 and
the Abel prize in 2008. This result was not only famous because of its profound
influence on the last fifty years of research in group theory, but also for its
length, weighing in at more than two hundred and fifty pages. Indeed, its length
and intricacy caused many to raise concerns about the correctness of its entire
argument.

In 2012 a team of fifteen people, led by Gonthier [12], completed a formal
verification of the proof, and of the mathematical theories it builds upon, using
the Coq system. The project took six years to complete (including three years
of work on the part of this paper’s third author). The resulting body of formal-
ized mathematics is divided into two main parts: the so called Mathematical
Components library (Math.Comp. for short), that covers many general purpose
mathematical theories (group theory, linear algebra, character theory . . . ) and
the main proof which builds upon them.

The entire development sums up to 125 Coq modules for a total of 161,000
lines of code: 93 modules and approximately 121,000 lines for the Math.Comp.
library, and 32 modules and 40,000 lines for the main proof. All Coq modules
are written in a custom language, called SSReflect, that is provided by a plu-
gin for Coq. The plugin, itself a 7,500-line OCaml program, is also part of the
Math.Comp. library. The entire source code amounts to 7.4 megabytes.

This code base constitutes one of the largest developments for Coq, and
pushes the system close to its limits; as a consequence, building it and working on
it has never been a pleasant experience for the user. The dependency graph of its
components, for example, is too large to be printed in this paper,3 and building
the entire project takes around two hours. This time is how long one needs to
wait in order to build on top of the Math.Comp. library, or browse it comfortably,
or simply to be able to go back to work after having refactored a module near
the root of the dependency graph. Despite that, other formalization projects
have started depending on (parts of) the Math.Comp. library, inheriting along
with it the complexity and time consumption of its build process. In particular,
building the SSReflect plugin by hand has always been a source of trouble for its
users, and the long time required to build the entire library eventually pushed
the authors of the library to provide reduced versions of it for those users who
did not need all of its power.

Importing this gargantuan project into Coqoon revealed a few deficiencies
in our implementation. Coqoon’s dependency resolver, for example, was over-
whelmed by the size of the dependency graph, in some cases taking more than
ten seconds to work out a file’s dependencies. Luckily, this was easily remedied
by the addition of a simple cache.

To spare the user from a prolonged compilation process, support for the
quick compilation [4] chain, a new feature provided by Coq 8.5, was also added to

3 The interested reader can browse it online: http://coqfinitgroup.gforge.inria.
fr/doc/

9

http://coqfinitgroup.gforge.inria.fr/doc/
http://coqfinitgroup.gforge.inria.fr/doc/


Coqoon. This process separates Coq compilation into two phases: the first is very
quick, checking only definitions and statements, while the second, slower, phase
completes the compilation by checking the proofs. As the first phase produces
intermediate files that can be used in place of traditional Coq libraries, it only
takes around seven minutes of computation on an ordinary laptop computer
before the entire set of 125 modules is usable.

As the user does not need to wait for the second phase in order to work with
the development, it can typically be run as a background task. Unlike the first
phase, it can take great advantage of parallel hardware, because each proof can
be checked independently of the others: on a computer with a dozen cores, the
proofs for the whole development can be completed in as few as 15 minutes.

In addition to that, we added support to OCaml modules to the Coq builder.
Combined with the OCaml builder provided by OcaIDE, this has made it pos-
sible to build both the SSReflect plugin and the Coq modules that depend on it
in a single integrated build process.

Finally, the PIDE backend for Coq was made more responsive and robust
when dealing with long modules. Most of the files in the Mathematical Compo-
nents library are more than a thousand lines of code in length, and some are
more than four thousand lines. For comparison, in the CompCert compiler,[6]
another Coq flagship project, composed of 5.2 megabytes of sources, more than
30% of the modules are longer than a thousand lines.

As a result of these changes, we believe Coqoon represents the best platform
for working on such large developments. In particular, at the time of writing, no
other IDE for Coq can handle projects that contain both OCaml and Coq code,
and Coqoon is the only one to incorporate the quick compilation chain as an
integrated part of an automatic build system.

4.2 Software Foundations

This is a relatively small Coq development that complements the Software Foun-
dations book by Pierce et al. It is a widely adopted course that touches on topics
like logic, functional programming, interactive theorem provers, and techniques
for software verification. Universities in the United States, Japan and Europe
use it in their curricula.

Coqoon has been used at the IT University of Copenhagen in conjunction
with the Software Foundations teaching material for three years. We have found
that the use of a more familiar development environment makes Coq much more
user-friendly for students, showing that building on top of an IDE brings advan-
tages for beginners and experts alike.

5 Building on Coqoon

5.1 Embedding Coq

Our work with OcaIDE shows that Coqoon can already interoperate with other
development environments built on the Eclipse platform. The next step in our
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work is to provide even tighter integration between the Coq and Java develop-
ment environments.

Java projects can already be turned into “hybrid” projects containing both
Java programs and Coq proofs about those programs, but this is only a start.
There are already several tools that embed assertions and proofs directly into
the source code that they describe, like Dafny [18], Spec# [3], and VeriFast [16].
The IDE seems like an obvious home for this functionality: that is, it should
be possible to extend the Java editor already present in Eclipse with Coqoon-
powered Coq proofs.

In fact, Coqoon’s predecessor, Kopitiam, provided just such an environment.
(We discuss Kopitiam in more detail in Section 6.1.) However, this environment
was built using cruder integration techniques and predated the introduction of
PIDE. A prototype inspired by Kopitiam, but built using Coqoon, PIDE, and a
custom text editor more aware of the interleaving between Coq and Java code,
is under development at the IT University.

5.2 Abstract load paths and OPAM

At the heart of Eclipse is an implementation of the OSGi component model [10],
which provides a platform for dynamically loading and unloading Java archives.
Eclipse extends these archives—known as “plugins” in the Eclipse context—with
extra metadata defining extension points, services which plugins can declare that
they contribute extensions to. Extension point definitions can require arbitrary
information from extensions, but this will typically include the fully-qualified
name of a class implementing a particular interface; in this way the original plu-
gin can instantiate, configure and use code contributed by one of its extensions.

Coqoon provides a number of Coq-specific extensions to Eclipse’s own core
plugins: for example, it contributes the Coqoon project builder to the resource
management plugin, and the PIDE document editor to the text editors plugin.
However, it also defines an extension point of its own, which allows other plugins
to add new handlers for abstract load path entries to Coqoon.

The Coq ecosystem has not traditionally provided any way of packaging and
distributing projects, which has made building on other people’s work difficult
and fragile. This is, however, about to change: Coq 8.5 will be distributed along-
side a repository of ready-to-install Coq projects for OPAM, the OCaml Package
Manager.

Making the abstract load path mechanism extensible means that Coqoon
is ready to adapt to this change. We expect to include a plugin with future
versions of Coqoon that will use the abstract load path mechanism to support
direct dependencies on OPAM projects, but this will not require any changes to
Coqoon itself.

6 Related work

Over the last thirty years, there have been multiple attempts to make the in-
teraction with proof assistants easier. Initially, all interaction was through a
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Read-Eval-Print loop (REPL), a command-line interface that interprets each
command typed by the user and prints out the resulting goal state (or an error)
before requesting new commands. Some proof assistants, such as HOL [13] and
HOL Light [15], still use this as their primary mode of interaction.

6.1 Waterfall interaction

Proof General [1], based on Emacs, was the one of the first interfaces that offered
more than just a REPL, and is the only one of the early interfaces that endures
until today, going so far as to define the de facto standard method of interaction
with Coq: the waterfall model. Although this still required the user to direct
proof processing manually, it was nevertheless a significant improvement over
the bare REPL.

The Proof General model of interaction has been duplicated by several other
Coq tools, including CoqIDE, which is a GTK+-based interface bundled with
Coq [23], and three Eclipse plugins. The first was created by Aspinall as an
attempt to port Proof General itself to Eclipse [2]; the other by Charles and
Kiniry who, as part of the Moebius project, built the plugin ProverEditor for
Coq in Eclipse [8]; the third, Kopitiam [20], by Mehnert, is Coqoon’s immediate
predecessor.

CoqIDE is a custom cross-platform text editor. It does not add any truly new
interaction features, beyond some Coq-specific code templates and the ability
to invoke make and the Coq verifier from the interface. While it allows the
user to have multiple buffers open, there is no relation between the contents
of the buffers. The version of CoqIDE shipped with Coq 8.5 was improved by
Tassi to support processing the waterfall in parallel. However, the fundamental
interaction with Coq will not change: the user still needs to manually direct Coq
to process parts of the active document.

The Proof General plugin for Eclipse was only available for Isabelle, and has
not been under active development since 2010, based on its Eclipse update site at
http://proofgeneral.inf.ed.ac.uk/eclipse/products/. It offered interac-
tion based on the waterfall model, and a high-level overview of individual proofs,
but did not provide any support for structured projects.

Conversely, the ProverEditor plugin for Eclipse was only available for Coq.
Its project support consisted of automatic Makefile generation and support for
invoking make—unlike Coqoon, it did not integrate into Eclipse’s build system.
ProverEditor was discontinued in 2009, when the last update to their GitHub
page was made.

Kopitiam targeted the 8.3 series of Coq, which had no structured way of
sending and receiving messages: Coq 8.4 introduced an XML-based protocol for
executing commands, and Coq 8.5 allows developers to add support for entirely
new protocols such as PIDE, but Coq 8.3 only supported interaction through the
standard Coq REPL. This was extremely brittle, and required constant polling
to read responses from Coq. Kopitiam had no support for Coq projects.

Kopitiam offered one unconventional extension to the waterfall model: it al-
lowed Coq proofs to be interleaved with Java source code. Using aspect-oriented
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programming to hook into the internals of the Java editor, it added Coq-like con-
trols to step through decorated Java programs: stepping over a Java command
would cause it to be ‘executed’ in an environment based on a separation logic
framework built by Bengtson et al. [5]. As the waterfall does not map cleanly
onto any Java concepts, this was fragile and difficult to use, but it was an in-
teresting extension—and one which we intend to reintroduce in the future using
PIDE.

6.2 PIDE and asynchronous editors

With the introduction of PIDE, Wenzel ushered in the third generation of proof
assistant interaction: instead of requiring the user to micromanage the system’s
execution, it allows asynchronous interfaces, such as Coqoon. The flagship ap-
plication of the PIDE approach for Isabelle is Isabelle/jEdit [26], which is now
the standard frontend to the Isabelle system.

Because PIDE and Isabelle/jEdit have been developed in tandem, the editor
makes full use of the features we have described in Section 3: the editor allows
asynchronous interaction with Isabelle, and marks up the proof document us-
ing information obtained during interpretation. Isabelle/jEdit has been partially
adapted to support Coq by Tankink [4]—the resulting combination being called
Coq/jEdit—but this adaptation does not have the full power of an IDE.

jEdit is an extensible text editor, not an IDE, and the way it was extended
by Wenzel in order to support entire developments is Isabelle specific. Following
the original design of provers of the HOL family, the Isabelle system does not
provide a notion of separate compilation: files are just loaded by a single prover
instance one after the other, perhaps using concurrent threads to speed up the
process. The PIDE protocol is even able to multiplex multiple text buffers to
the same prover instance, and expects the prover to sort that out.
The way Coq works is closer to how traditional programming languages work.
The Coq compiler can deal with one file at a time, and unrelated files can be
processed by different instances of the compiler, possibly in parallel. As a result
Coq/jEdit can only work with a single file and relies on the user to provide
their own build system for larger projects. Coqoon is able to take care of the
entire build process of large developments, even when they include custom Coq
plugins, as described in section 2.4.

Another limitation of Coq/jEdit is that, while Isabelle/jEdit maintains a
model of proof documents using PIDE, Coq/jEdit does not. The design of Is-
abelle’s language makes it much easier to integrate that model with jEdit’s
syntax-and-text oriented views. Isabelle’s proof language, Isar, is a two-tiered
language, that consists of an outer syntax that gives structure to proof docu-
ments, the Isar language proper, and numerous inner syntaxes used for specifica-
tion and proof methods, the most notable being the Higher Order Logic; HOL.
The transition between these languages is syntactically indicated using quota-
tion marks. The outer syntax has a simple structure and can easily be parsed
by the Scala library of PIDE. The inner syntaxes are more versatile, and the
parsing and processing is handled by the Isabelle side of PIDE. It is this outer
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syntax that is exposed to jEdit. In Coq’s language, there is no syntactical sepa-
ration between the different languages used, making it difficult to implement a
Scala-side parser that exposes the structure. (Coqoon’s model takes some steps
in this direction, but it is necessarily full of special cases and heuristics.) This
lack of a Scala-implemented parser for Coq means that jEdit plugins that rely
on such a parser do not work.

Finally, because jEdit is not under active development, its plugins have also
grown stale, not being updated to new models and tools. For Isabelle/jEdit,
Wenzel already had to change the core of jEdit to allow the PIDE plugin to
paint text when semantic information comes in. This means that Isabelle/jEdit
is a small fork of jEdit itself, and that it requires its users to install the entire
client, instead of just a plugin. Coqoon works on standard Eclipse distributions.

A second client in the PIDE ecosystem is Isabelle/Eclipse [24]. The develop-
ment of this Eclipse plugin is on hiatus at the moment, but the version that is
available, emulates the Isabelle/jEdit interaction model in Eclipse: it does not
provide any ‘Eclipse-specific’ features like project management or compilation
of single files. In its current state, it behaves much like Isabelle/jEdit, but using
Eclipse to provide the visual elements for the interface.

Clide [22] is another system that builds upon the PIDE architecture for Is-
abelle. It is a web interface that is mainly aimed at real time collaboration on
proof documents. In a similar fashion to Google Docs, several users can work on
the same document, seeing each other’s modifications and the responses from
Isabelle. It supports projects, but only as a way of grouping together collabora-
tions with others; as such, files in a project are not verified when one file changes,
and errors in a proof document are not shown until it is opened.

6.3 Another approach: the ALF tradition

The ALF proof assistant [19] and its modern-day descendants–chief amongst
them Agda [21]—take a rather different approach to the construction of proofs.
Whereas Coq proofs consist of a sequence of invocations of tactics, each of which
manipulates Coq’s internal representation of a proof term, a proof in the ALF
tradition consists simply of the finished proof term: the indirect manipulations
performed by tactics in the Coq world are replaced by direct modifications of
potentially incomplete terms in source files. Compared to ALF-style proofs, Coq
proofs are thus somewhat akin to an edit script: they enumerate the steps taken
by the user to arrive at a complete proof term, which are analogous to the steps
that the user would perform directly in ALF.

Using this approach in practice requires a more intelligent interface than
a simple text editor. Agda proofs, for example, are typically written using an
advanced Emacs mode equipped with the ability to rewrite regions of the doc-
ument according to the transformations supported by the prover. However, this
mode shares many of the other drawbacks of tools built on extensible editors: in
particular, it has no support for project management.
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7 Conclusion

This paper presents Coqoon, an IDE for the interactive proof assistant Coq in
Eclipse. Coqoon moves away from traditional synchronous proof development
and towards an asynchronous model that allows any part of a proof document
to be modified and rechecked without having to retract unrelated proofs. It also
supports Coq projects that are fully integrated into the Eclipse build system:
files can be added, deleted, and moved at will, and Coqoon will track these
changes and rebuild affected files whenever necessary. Coqoon can also make use
of the large number of plugins already available for Eclipse, such as the OCaml
plugin OcaIDE, turning Coqoon into a complete development environment for
even the most complex Coq projects, or the version control plugin EGit.

Coqoon also brings support for Coq projects to other Eclipse projects and
plugins, paving the way for complete IDEs for software verification where pro-
grams and proofs of their correctness can be maintained within the same project—
or even in the same file.

Together, these features represent a significant advance: a truly integrated
and comprehensive proof assistant IDE, bringing to the world of proof assistants
a workflow that software developers have enjoyed for decades.
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2. David Aspinall, Christoph Lüth, and Daniel Winterstein. A Framework for Inter-
active Proof. In Calculemus/MKM, pages 161–175, 2007.

3. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec] Programming
System: An Overview. In CASSIS, pages 49–69, 2005.

4. Bruno Barras, Carst Tankink, and Enrico Tassi. Asynchronous processing of Coq
documents: from the kernel up to the user interface. In Proceedings of ITP, Nanjing,
China, August 2015.

5. Jesper Bengtson, Jonas Braband Jensen, Filip Sieczkowski, and Lars Birkedal. Ver-
ifying object-oriented programs with higher-order separation logic in Coq. Lecture
Notes in Computer Science, 6898:22–38, 2011.

6. Sylvie Boldo, Jacques-Henri Jourdan, Xavier Leroy, and Guillaume Melquiond. A
Formally-Verified C Compiler Supporting Floating-Point Arithmetic. In ARITH,
pages 107–115. IEEE Computer Society, 2013.

7. Nicolas Bros and Rafael Cerioli. OcaIDE. Software, available on http://www.

algo-prog.info/ocaide/.

8. Julien Charles and Joseph R. Kiniry. A Lightweight Theorem Prover Interface for
Eclipse. In UITP Workshop proceedings, 2008.

9. Eclipse Foundation. EGit. Software, available on http://www.eclipse.org/egit/.

10. Eclipse Foundation. Equinox. Software, available on http://www.eclipse.org/

equinox/.

11. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns
– Elements of Reusable Object-Oriented Software. Addison–Wesley, 1994. First
edition, 20th printing.

12. Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen,
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