3 research outputs found

    Fuzzy Navigation Engine: Mitigating the Cognitive Demands of Semi-Natural Locomotion

    Get PDF
    Many interfaces exist for locomotion in virtual reality, although they are rarely considered fully natural. Past research has found that using such interfaces places cognitive demands on the user, with unnatural actions and concurrent tasks competing for finite cognitive resources. Notably, using semi-natural interfaces leads to poor performance on concurrent tasks requiring spatial working memory. This paper presents an adaptive system designed to track a user\u27s concurrent cognitive task load and adjust interface parameters accordingly, varying the extent to which movement is fully natural. A fuzzy inference system is described and the results of an initial validation study are presented. Users of this adaptive interface demonstrated better performance than users of a baseline interface on several movement metrics, indicating that the adaptive interface helped users manage the demands of concurrent spatial tasks in a virtual environment. However, participants experienced some unexpected difficulties when faced with a concurrent verbal task

    Orientation and metacognition in virtual space

    Get PDF
    Cognitive scientists increasingly use virtual reality scenarios to address spatial perception, orientation, and navigation. If based on desktops rather than mobile immersive environments, this involves a discrepancy between the physically experienced static position and the visually perceived dynamic scene, leading to cognitive challenges that users of virtual worlds may or may not be aware of. The frequently reported loss of orientation and worse performance in point-to-origin tasks relate to the difficulty of establishing a consistent reference system on an allocentric or egocentric basis. We address the verbalisability of spatial concepts relevant in this regard, along with the conscious strategies reported by participants. Behavioural and verbal data were collected using a perceptually sparse virtual tunnel scenario that has frequently been used to differentiate between humans' preferred reference systems. Surprisingly, the linguistic data we collected relate to reference system verbalisations known from the earlier literature only to a limited extent, but instead reveal complex cognitive mechanisms and strategies. Orientation in desktop VR appears to pose considerable challenges, which participants react to by conceptualising the task in individual ways that do not systematically relate to the generic concepts of egocentric and allocentric reference frames

    Orientation and metacognition in virtual space.

    Full text link
    corecore