17 research outputs found

    Real-time Information, Uncertainty and Quantum Feedback Control

    Full text link
    Feedback is the core concept in cybernetics and its effective use has made great success in but not limited to the fields of engineering, biology, and computer science. When feedback is used to quantum systems, two major types of feedback control protocols including coherent feedback control (CFC) and measurement-based feedback control (MFC) have been developed. In this paper, we compare the two types of quantum feedback control protocols by focusing on the real-time information used in the feedback loop and the capability in dealing with parameter uncertainty. An equivalent relationship is established between quantum CFC and non-selective quantum MFC in the form of operator-sum representation. Using several examples of quantum feedback control, we show that quantum MFC can theoretically achieve better performance than quantum CFC in stabilizing a quantum state and dealing with Hamiltonian parameter uncertainty. The results enrich understanding of the relative advantages between quantum MFC and quantum CFC, and can provide useful information in choosing suitable feedback protocols for quantum systems.Comment: 24 page

    Nonlinear quantum input-output analysis using Volterra series

    Full text link
    Quantum input-output theory plays a very important role for analyzing the dynamics of quantum systems, especially large-scale quantum networks. As an extension of the input-output formalism of Gardiner and Collet, we develop a new approach based on the quantum version of the Volterra series which can be used to analyze nonlinear quantum input-output dynamics. By this approach, we can ignore the internal dynamics of the quantum input-output system and represent the system dynamics by a series of kernel functions. This approach has the great advantage of modelling weak-nonlinear quantum networks. In our approach, the number of parameters, represented by the kernel functions, used to describe the input-output response of a weak-nonlinear quantum network, increases linearly with the scale of the quantum network, not exponentially as usual. Additionally, our approach can be used to formulate the quantum network with both nonlinear and nonconservative components, e.g., quantum amplifiers, which cannot be modelled by the existing methods, such as the Hudson-Parthasarathy model and the quantum transfer function model. We apply our general method to several examples, including Kerr cavities, optomechanical transducers, and a particular coherent feedback system with a nonlinear component and a quantum amplifier in the feedback loop. This approach provides a powerful way to the modelling and control of nonlinear quantum networks.Comment: 12 pages, 7 figure

    Sliding Mode Control of Two-Level Quantum Systems

    Full text link
    This paper proposes a robust control method based on sliding mode design for two-level quantum systems with bounded uncertainties. An eigenstate of the two-level quantum system is identified as a sliding mode. The objective is to design a control law to steer the system's state into the sliding mode domain and then maintain it in that domain when bounded uncertainties exist in the system Hamiltonian. We propose a controller design method using the Lyapunov methodology and periodic projective measurements. In particular, we give conditions for designing such a control law, which can guarantee the desired robustness in the presence of the uncertainties. The sliding mode control method has potential applications to quantum information processing with uncertainties.Comment: 29 pages, 4 figures, accepted by Automatic

    Sampled-data design for robust control of a single qubit

    Full text link
    This paper presents a sampled-data approach for the robust control of a single qubit (quantum bit). The required robustness is defined using a sliding mode domain and the control law is designed offline and then utilized online with a single qubit having bounded uncertainties. Two classes of uncertainties are considered involving the system Hamiltonian and the coupling strength of the system-environment interaction. Four cases are analyzed in detail including without decoherence, with amplitude damping decoherence, phase damping decoherence and depolarizing decoherence. Sampling periods are specifically designed for these cases to guarantee the required robustness. Two sufficient conditions are presented for guiding the design of unitary control for the cases without decoherence and with amplitude damping decoherence. The proposed approach has potential applications in quantum error-correction and in constructing robust quantum gates.Comment: 33 pages, 5 figures, minor correction
    corecore