4 research outputs found

    A comparison of controller architectures and learning mechanisms for arbitrary robot morphologies

    Full text link
    The main question this paper addresses is: What combination of a robot controller and a learning method should be used, if the morphology of the learning robot is not known in advance? Our interest is rooted in the context of morphologically evolving modular robots, but the question is also relevant in general, for system designers interested in widely applicable solutions. We perform an experimental comparison of three controller-and-learner combinations: one approach where controllers are based on modelling animal locomotion (Central Pattern Generators, CPG) and the learner is an evolutionary algorithm, a completely different method using Reinforcement Learning (RL) with a neural network controller architecture, and a combination `in-between' where controllers are neural networks and the learner is an evolutionary algorithm. We apply these three combinations to a test suite of modular robots and compare their efficacy, efficiency, and robustness. Surprisingly, the usual CPG-based and RL-based options are outperformed by the in-between combination that is more robust and efficient than the other two setups

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance

    SpĂ©ciation guidĂ©e par l'environnement‎ : interactions sur des pĂ©riodes Ă©volutionnaires de communautĂ©s de plantes artificielles

    Get PDF
    Depuis des dĂ©cades, les chercheurs en Vie Artificielle on crĂ©Ă© une plĂ©thore de crĂ©atures en utilisant de multiples schĂ©mas d’encodage, capacitĂ©s motrices et aptitudes cognitives. Un motif rĂ©current, cependant, est que la focalisation est centrĂ©e sur les individus Ă  Ă©voluer, ne laissant que peu de place aux variations environnementales. Dans ce travail, nous argumentons que des contraintes abiotiques plus complexes pourraient diriger un processus Ă©volutionnaire vers des rĂ©gions de l’espace gĂ©nĂ©tique plus robustes and diverses. Nous avons conçu un modĂšle morphologique complexe, basĂ© sur les graphes orientĂ©s de K. Sims, qui repose sur le moteur physique Bullet pour la prĂ©cision et utilise des contraintes Ă  6 DegrĂ©s de LibertĂ© pour connecter les paires d’organes. Nous avons ainsi Ă©voluĂ© un panel de plantes Ă  l’aspect naturel qui devaient survivre malgrĂ© des niveaux de ressources variables induits par une source de lumiĂšre mobile et des motifs de pluies saisonniĂšres. En plus de cette expĂ©rience, nous avons aussi obtenu une meilleure croissance verticale en ajoutant une contrainte biotique artificielle sous la forme de brins d’herbe statiques. La complexitĂ© de ce modĂšle, cependant, ne permettait pas la mise a l’échelle d’une Ă©volution de populations et a donc Ă©tĂ© rĂ©duit dans l’expĂ©rience suivante, notamment en supprimant le moteur physique. Cela nous a amenĂ© Ă  l’exploration de la co-Ă©volution de populations composĂ©es d’une unique espĂšce et ayant la capacitĂ© de se reproduire de maniĂšre autonome grĂące Ă  notre Bail-Out Crossover (Croisement avec DĂ©sistement). Bien que les populations rĂ©sultantes n’ont pas dĂ©montrĂ© un grand intĂ©rĂȘt pour cette aptitude, elles ont nĂ©anmoins fourni d’importantes informations sur les mĂ©canismes d’auto-reproduction. Ceux-ci ont Ă©tĂ© mis en action dans un second modĂšle inspirĂ© des travaux de Bornhofen. GrĂące Ă  sa lĂ©gĂšretĂ©, cela nous a permis de traiter non seulement de plus grandes populations (de l’ordre de milliers d’individus) mais aussi de plus longues pĂ©riodes Ă©volutionnaires (100 annĂ©es, approximativement 5000 gĂ©nĂ©rations). Notre premiĂšre expĂ©rience avec ce modĂšle s’est concentrĂ©e sur la possibilitĂ© de reproduire des cas d’école de spĂ©ciation (allopatrique, parapatrique, pĂ©ripatrique) sur cette plate-forme. GrĂące Ă  APOGet, une nouvelle procĂ©dure de regroupement pour l’extraction en parallĂšle d’espĂšces Ă  partir d’un arbre gĂ©nĂ©alogique, nous avons pu affirmer que le systĂšme Ă©tait effectivement capable de spĂ©ciation spontanĂ©e. Cela nous a conduit Ă  une derniĂšre expĂ©rience dans laquelle l’environnement Ă©tait contrĂŽlĂ© par de la Programmation GĂ©nĂ©tique CartĂ©sienne (CGP), permettant ainsi une Ă©volution automatique d’une population et des contraintes abiotiques auxquelles elle Ă©tait confrontĂ©e. Par une variation du traditionnel algorithme 1 + λ nous avons obtenu 10 populations finales qui ont survĂ©cu Ă  de brutales et imprĂ©visibles variations environnementales. En les comparant Ă  un groupe contrĂŽle c pour lequel les contraintes ont Ă©tĂ© maintenues faibles et constantes, le groupe Ă©voluĂ© e a montrĂ© des performances mitigĂ©es: dans les deux types de tests, une moitiĂ© de e surpassait c qui, Ă  son tour, surpassait la moitiĂ© restante de e. Nous avons aussi trouvĂ© une trĂšs forte corrĂ©lation entre les chutes catastrophiques de population et la performance des Ă©volutions correspondantes. Il en rĂ©sulte que l’évolution de population dans des environnements hostiles et dynamiques n’est pas une panacĂ©e bien que ces expĂ©riences en dĂ©montrent le potentiel et souligne le besoin d’études ultĂ©rieures plus approfondies.Artificial Life researchers have, for decades, created a plethora of creatures using numerous encoding schemes, motile capabilities and cognitive capacities. One recurring pattern, however, is that focus is solely put on the evolved individuals, with very limited environmental variations. In this work, we argue that more complex abiotic constraints could drive an evolutionary process towards more robust and diverse regions of the genetic space. We started with a complex morphogenetic model, based on K. Sims’ directed graphs, which relied on the Bullet physics engine for accuracy and used 6Degrees of Freedom constraints to connect pairs of organs. We evolved a panel of natural-looking plants which had to cope with varying resource levels thanks to a mobile light source and seasonal rain patterns. In addition to this experiment, we also obtained improved vertical growth by adding an artificialbiotic constraint in the form of static grass blades. However, the computational cost of this model precluded scaling to a population-level evolution and was reduced in the successive experiment, notably by removing the physical engine. This led to the exploration of co-evolution on single-species populations which, thanks to our Bail-Out Crossover (BOC) algorithm, were able to self-reproduce. The resulting populations provided valuable insight into the mechanisms of self-sustainability. These were put to action in an even more straightforward morphogenetic model inspired by the work of Bornhofen. Due to its light weightness, this allowed for both larger populations (up to thousands of individuals) and longer evolutionary periods (100 years, roughly 5K generations). Our first experiment on this model tested whether text-book cases of speciation could be reproduced in our framework. Such positive results were observed thanks to the species monitoring capacities of APOGeT, a novel clustering procedure we designed for online extraction of species from a genealogic tree. This drove us to a final experiment in which the environment was controlled through Cartesian Genetic Programming thus allowing the automated evolution of both the population and abiotic constraints it is subjected to. Through a variation of the traditional1 + λ algorithm, we obtained 10 populations (evolved group e) which had endured in harsh and unpredictable environments. These were confronted to a control group c, in which the constraints were kept mild and constant, on two types of colonization evaluation. Results showed that the evolved group was heterogeneous with half of e consistently outperforming members of c and the other half exhibiting worse performances than the baseline. We also found a very strong positive correlation between catastrophic drops in population level during evolution with the robustness of their final representatives. From this work, two conclusions can be drawn. First, though the need to fight on both the abiotic and biotic fronts can lead to worse performances, more robust individuals can be found in reasonable time-frames. Second, the automated co-evolution of populations and their environments is essential in exploring counter-intuitive, yet fundamental, dynamics both in biological and artificial life
    corecore