2 research outputs found

    FROM IRREDUNDANCE TO ANNIHILATION: A BRIEF OVERVIEW OF SOME DOMINATION PARAMETERS OF GRAPHS

    Get PDF
    Durante los últimos treinta años, el concepto de dominación en grafos ha levantado un interés impresionante. Una bibliografía reciente sobre el tópico contiene más de 1200 referencias y el número de definiciones nuevas está creciendo continuamente. En vez de intentar dar un catálogo de todas ellas, examinamos las nociones más clásicas e importantes (tales como dominación independiente, dominación irredundante, k-cubrimientos, conjuntos k-dominantes, conjuntos Vecindad Perfecta, ...) y algunos de los resultados más significativos.   PALABRAS CLAVES: Teoría de grafos, Dominación.   ABSTRACT During the last thirty years, the concept of domination in graphs has generated an impressive interest. A recent bibliography on the subject contains more than 1200 references and the number of new definitions is continually increasing. Rather than trying to give a catalogue of all of them, we survey the most classical and important notions (as independent domination, irredundant domination, k-coverings, k-dominating sets, Perfect Neighborhood sets, ...) and some of the most significant results.   KEY WORDS: Graph theory, Domination

    The queen's domination problem

    Get PDF
    The queens graph Qn has the squares of then x n chessboard as its vertices; two squares are adjacent if they are in the same row, column or diagonal. A set D of squares of Qn is a dominating set for Qn if every square of Qn is either in D or adjacent to a square in D. If no two squares of a set I are adjacent then I is an independent set. Let 'J'(Qn) denote the minimum size of a dominating set of Qn and let i(Qn) denote the minimum size of an independent dominating set of Qn. The main purpose of this thesis is to determine new values for'!'( Qn). We begin by discussing the most important known lower bounds for 'J'(Qn) in Chapter 2. In Chapter 3 we state the hitherto known values of 'J'(Qn) and explain how they were determined. We briefly explain how to obtain all non-isomorphic minimum dominating sets for Q8 (listed in Appendix A). It is often useful to study these small dominating sets to look for patterns and possible generalisations. In Chapter 4 we determine new values for')' ( Q69 ) , ')' ( Q77 ), ')' ( Q30 ) and i (Q45 ) by considering asymmetric and symmetric dominating sets for the case n = 4k + 1 and in Chapter 5 we search for dominating sets for the case n = 4k + 3, thus determining the values of 'I' ( Q19) and 'I' (Q31 ). In Chapter 6 we prove the upper bound')' (Qn) :s; 1 8 5n + 0 (1), which is better than known bounds in the literature and in Chapter 7 we consider dominating sets on hexagonal boards. Finally, in Chapter 8 we determine the irredundance number for the hexagonal boards H5 and H7, as well as for Q5 and Q6Mathematical SciencesD.Phil. (Applied Mathematics
    corecore