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Summary 

The queens graph Qn has the squares of then x n chessboard as its vertices; two squares 

are adjacent if they are in the same row, column or diagonal. A set D of squares of 

Qn is a dominating set for Qn if every square of Qn is either in D or adjacent to a 

square in D. If no two squares of a set I are adjacent then I is an independent set. 

Let 'J'(Qn) denote the minimum size of a dominating set of Qn and let i(Qn) denote 

the minimum size of an independent dominating set of Qn. The main purpose of this 

thesis is to determine new values for'!'( Qn). We begin by discussing the most important 

known lower bounds for 'J'(Qn) in Chapter 2. In Chapter 3 we state the hitherto known 

values of 'J'(Qn) and explain how they were determined. We briefly explain how to 

obtain all non-isomorphic minimum dominating sets for Q8 (listed in Appendix A). It 

is often useful to study these small dominating sets to look for patterns and possible 

generalisations. In Chapter 4 we determine new values for')' ( Q69 ) , ')' ( Q77 ), ')' ( Q30 ) 

and i (Q45 ) by considering asymmetric and symmetric dominating sets for the case 

n = 4k + 1 and in Chapter 5 we search for dominating sets for the case n = 4k + 3, 

thus determining the values of 'I' ( Q19 ) and 'I' (Q31 ). In Chapter 6 we prove the upper 

bound')' (Qn) :s; 1
8
5 n + 0 (1), which is better than known bounds in the literature and 

in Chapter 7 we consider dominating sets on hexagonal boards. Finally, in Chapter 8 

we determine the irredundance number for the hexagonal boards H5 and H7, as well 

as for Q5 and Q6 • 

Key terms: chessboards, queens graph, queens domination problem, domination, ir­

redundance, hexagonal boards. 
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Chapter 1 

Introduction 

As far as could be established, the earliest ideas of dominating sets date back to the 

origin of the game of chess in Indiaover400 years ago. Chess, of course, is much more 

than merely a mathematical activity; nevertheless, in chess one studies sets of chess 

pieces which cover, or dominate, various opposing pieces or various squares of the 

chessboard. Chessboard domination problems thus initiated the study of dominating 

sets of graphs, at first rather informally until the topic of domination was given formal 

mathematical definition with the publication of the books by Berge [2] and Ore [14] 

in 1962. 

For a given graph G = (V, E) and a vertex v E V, we denote the open neigh­

bourhood of v by N (v) and the closed neighbourhood by N [v], that is, N (v) = 

{u Ev I UV E E}andN[v] = N(v)U{v}. ForS <;; VwedefineN[S] = u.ESN[s]. 

We further define the private neighbourhood of v E Sas pn[v, S] = N[v] - N[S -

{ v}]. If pn[v, S] =F 0 for some vertex v, then every vertex inpn[v, S] is called a private 

neighbour of v (relative to S). Note that a vertex can be its own private neighbour. A 

set S <;; V is called a dominating set of G if each vertex of G which is not in S, is ad­

jacent to a vertex in S, that is, N [SJ = V. Further, Sis an independent set if no two 

vertices in Sare adjacent in G. A vertex v E Sis irredundant in S if it has at least 

one private neighbour relative to S, and the set Sis irredundant if every vertex v E S 
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Chapter I Introduction 

is irredundant in S. An irredundant set S is maximal irredundant if for eveiy vertex 

u E V - S, the set S U { u} is not irredundant, which means that there exists at least 

one vertex w E SU { u} which does not have a private neighbour. 

The domination number "I ( G) (the independent domination number i ( G), respec­

tively) of the graph G is the smallest number of vertices in a dominating set (an inde­

pendent dominating set) of G. The minimum cardinality of a maximal irredundant set 

in G is called the irredundance number and is denoted by ir( G). As shown in [7] , a 

minimal dominating set is also a maximal irredundant set. Since an independent dom­

inating set is a dominating set by definition, it follows that ir ( G) :::; "I ( G) :::; i ( G) for 

any graph G. 

That even the original chessboard domination problems are astonishingly difficult is 

apparent in view of the fact that so few of these problems have been solved completely. 

The unsolved classical problems were important in motivating the revival of the study 

of dominating sets in graphs in the early 1970's. One of the most interesting - and 

most difficult - chessboard problems is the queen domination problem in which one 

has to determine the minimum number of queens necessary to cover (or dominate) all 

squares on an n x n chessboard. This can also be considered as a graph domination 

problem, in the following way: 

The queens graph Qn has the squares of then x n chessboard as its vertices; two 

squares are adjacent if a queen placed on one square covers the other square, that is, 

if the squares are in the same row, column or diagonal. A set D of squares of Qn is a 

dominating set of Qn if eveiy square of Qn is either in D or adjacent to a square in D. 

If no two squares of a set I are adjacent, then I is an independent set. If each queen on 

a set X of squares covers a square which is not covered by a queen on any other square 

in X, then Xis an irredundant set of Qn. As for graphs in general, 7(Qn) denotes 

the minimum size of a dominating set for Qn, i( Qn) denotes the minimum size of an 
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Chapter 1 Introduction 

independent dominating set of Qn and ir( Qn) denotes the minimum size of a maximal 

irredundant set ofQn. We emphasize that for any n, ir(Qn) :=; 'Y(Qn) :=; i(Qn)-

In 1862, C. F. de Jaenisch [8] considered the problem of determining values of 

"((Qn), and in 1892, WW Rouse Ball [l] gave values of 'Y(Qn) up ton= 8. Much 

more recently P H. Spencer, as cited in [6, 17] , proved the lower bound "!( Qn) :::0: 

~(n - 1), n :::0: 1. Several researchers (see [6, 9, 10, 4]) established upper bounds. 

W D. Weakley [17] refined the lower bound by proving 'Y( Q4k+I) :::0: 2k + 1 for all 

k :::0: 0. Healsoshowedthat"((Q4k+I) = 2k+lfork = 3,4,5,6and8byconstructing 

dominating sets of order 2k + 1. A. P Burger [5] added k = 9, 12, 13 and 15 to 

the list and P B_ Gibbons and J. A. Webb [ll] filled in the gaps by finding sets for 

k = 7, 10, 11and14 so that 'Y(Q4k+I) = 2k + 1for0 :=; k :=; 15. For surveys oftl!is 

and other chessboard problems see [2, 9, 13] . 

The main purpose of this thesis is to determine new values for 'Y(Qn). We begin by 

discussing the most important known lower bounds for 'Y( Qn) in Chapter 2. In Chapter 

3 we state the hitherto known values of 'Y( Q,..) and explain how they were determined. 

We briefly explain how to obtain all non-isomorphic minimum dominating sets for 

Q8 (listed in Appendix A). It is often useful to study these small dominating sets to 

look for patterns and possible generalisations. In Chapter 4 we determine new values 

for 'Y (Q69), 'Y (Qn ), 'Y (Q30) and i (Q45 ) by considering asymmetric and symmetric 

dominating sets for the case n = 4k + 1 and in Chapter 5 we search for dominating 

sets for the case n = 4k + 3, thus determining the values of 'Y (Q 19 ) and 'Y ( Q31 ). In 

Chapter6 we prove the upper bound 'Y (Qn) :=; 1
8
5 n+O (1), which is better than known 

bounds in the literature and in Chapter 7 we consider dominating sets on hexagonal 

boards. Finally, in Chapter 8 we determine the irredundance number for the hexagonal 

boards H5 and H7 , as well as for Q5 and Q6 . 
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Chapter 2 

Lower bounds for the domina-

tion number of Qn 

In this chapter we discuss lower bounds for 1(Qn). We begin with the proof of 

the bound 1(Qn) :;:: Hn - 1) found by Spencer We then give some properties of 

dominating sets, discovered by Weakley, which attain this bound, and which lead to a 

refinement of this bound. 

Note that any one queen can attack at most 4n - 3 squares on an n x n chessboard: 

A queen closest to the centre of the board dominates the most squares ( 4n - 3 if n is 

odd) and all other queens dominate fewer squares. Therefore 'Y( Qn) is bounded below 

by in. Until quite recently, no non-trivial lower bounds were known, in spite of the 

fact that this problem dates as far back as 1862. 

We will identify the n x n chessboard with a square of side length n in the Carte­

sian plane, having sides parallel to the coordinate axes. We usually place the board so 

that the centre of the lower left comer square has coordinates (1, 1), and refer to board 

squares by the coordinates of their centres. In some cases we place the board so that 

the centre square has coordinates (0,0). The square (x, y) is in the column x and row 

y. A square is called even (respectively odd) ifthe sum of its coordinates is even (re-
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Chapter 2 Lower bounds for the domination number of Qn 

spectively odd). Notice that diagonals consist of squares with the same parity. Positive 

and negative diagonals are sets of squares whose centres lie on lines of slope 1 and 

-1, respectively. The main diagonals are the two diagonals from corner square to cor­

ner square. The edge squares are the 4n - 4 squares on the edge of an n x n board. 

The set of all edge squares is also referred to as the edge. A set of squares (rows, di­

agonals, etc.) meet another set of squares in the intersection of the two sets. A square 

(row, column, diagonal) is said to be occupied ifthere is a queen on that square (or in 

the row, column, diagonal); otherwise it is unoccupied 

The following theorem by PH. Spencer gives a lower bound for -y(Q,.). The proof 

given can be found in [17] . 

Theorem 2.1 For each positive integer n, -y( Qn) 2: H n - 1). 

Proof. It is easy to see the theorem is true for n < 3, so we assume n 2: 3. Note that 

placing queens at ( i, i) for all i but 1 and 3 gives a dominating set of n - 2 queens, so 

-y( Q,.) :::; n - 2. Thus any dominating set of minimal size leaves at least two rows and 

two columns empty. 

Assume we have a dominating set for Qn, n 2: 3, with 'Y = -y(Qn) queens. Let 

a be the number of the leftmost empty column, b the number of the rightmost empty 

column, cthe number of the lowest empty row, d the number of the highest empty row 

By symmetry we may assumed - c :::; b - a. This inequality implies that we can find 

b- a consecutive rows including those rows lying strictly between rows c and d. Thus 

there exist an integer m and rows 

m,m+ 1,m+2, ... ,m+b- a-1, (2.1) 

with 

1 :::; m :::; c + 1 and d - 1 :::; m + b - a - 1 :::; n. (2.2) 
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Chapter 2 Lower bounds for the domination number of Qn 

For such an m, let Sm be those squares in columns a and b which are in the rows (2.1) 

and let Pm be all the squares below row m or above row m + b - a - 1 which contain 

queens. Since all rows above d or below c contain queens and at most one of the rows 

below or above Sm can be empty, namely row cord (remember b - a :'.". d - c), we 

have 

IPml :'.". n - (b- a) - 1. (2.3) 

No diagonal contains more than one square of Sm, so no queen diagonally attacks 

more than two squares of Sm. Queens of Pm do not attack any squares of Sm by row 

or column, so each attacks at most two squares of Sm. Other queens attack at most 

four squares of Sm. Each of the 2(b - a) squares of Sm is attacked, so 

2(b - a) < 2IPml + 4('Y- IP ml) 

41-21Pml 

< 41-2[n-(b-a)-1], 

which simplifies to/:'.". !(n - 1). 

(2.4) 

D 

Placing a queen on the centre square of Q3 shows 1( Q3 ) = 1 and Figure 2.1 shows a 

placement, establishing 1(Q11 ) = 5. No other cases are known in which the bound of 

Theorem 2.1 holds. In Chapter 5 we investigate this matter further. The next theorem 

by W D. Weakley [17] gives some idea of why the bound of Theorem 2.1 is rarely 

attained. This result also yields a refinement of the bound in Theorem 2.1, namely 

1(Q4k+1) :'.". 2k + 1. 
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Chapter 2 Lower bounds for the domination number of Qn 

• 
• 
·~-

• 
• 

• 
Figure 2.1 "( ( Qu) = 5 

Theorem 2.2 Let R be a dDminating set of Qn such that IRI = ~(n - 1). Then 

L n = 3 (mod 4). 

2. R is independent. 

3. There is an odd integer j, Hn + 1) "'5. j "'5. n, such thatthere is a j x j 

sub-board U of Qn satis.fYing: 

(a) each edge square of U is attacked exactly once; 

(b) each row or column of Qn that does not meet U contains exactly 

one queen, as does each main diagonal of U. 

Proof. We use the notation and definitions of the proof of Theorem 2.1 and assume 

that R is a dominating set of size ~ ( n - 1) of Qn, oriented so that d - c "'5. b - a. Let 

m be any integer satisfying (2.2). From (2.4) we have 2(b - a) "'5. 47 - 2IPml. and 

together with IRI = !(n - 1) we obtain IPml "'5. n - (b - a) - 1, which with (2.3) 

implies IP ml = n - (b - a) - 1. 
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Chapter 2 Lower bounds for the domination number of Qn 

If d - c < b - a then we can choose m satisfying (2.2) so that both rows c and d 

meet Sm. Then each row not meeting Sm contains at least one queen, giving [Pml :;:: 

n - (b - a), a contradiction. Therefore d - c = b - a. 

Let j = b- a+ 1 and let Ube the j x j sub-board having corners (a, c), (a, d), (b, c) 

and (b, d). Let E denote the set of edge squares of U. 

The only values of m satisfying (2.2) are m = c, c + 1. Since [P,[ = [Pc+rl = 

n - ( b - a) - 1, each row that does not meet U contains exactly one queen. Similarly 

each column not meeting U contains exactly one queen. 

Since the inequalities in (2.4) are equations when I RI = / = ~ ( n- l ), for both m = 

c and m = c+ 1 each queen of Pm must attack two squares of Sm diagonally, necessarily 

one along each diagonal. Therefore every queen of R lies strictly between the positive 

diagonals through (a, d) and (b, c ), and strictly between the negative diagonals through 

(a, c) and (b, d). From this fact we draw two conclusions. 

First, no queen has the property that both its row and its column miss U, so there 

are 2(n- j) queens outside U, each attacking six squares of E. The remaining ~(n -

1) - 2( n - j) queens each attack eight squares of E, so the number of squares of E 

attacked is at most 

6.2(n - j) + S[+(n - 1) - 2(n - j)], 

which equals 4(j -1). Since Risa dominating set and E contains 4(j - 1) squares, 

each square of Eis attacked exactly once. Xhis establishes (a). 

Second, the corner squares of U are not attacked diagonally .from outside U. Since 

these squares lie in unoccupied rows and columns, they must be diagonally attacked 

from inside U. Thus the long diagonals of U are occupied. This shows there is at 

least one queen inside U, and since there are 2(n - j) queens outside U we have 

1+2(n - j)::; Hn - 1), which reduces to Hn + 1)::; j. 
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Chapter 2 Lower bounds for the domination number of Qn 

If R is dependent then there are two queens in some line (row, column, or diagonal); 

since each square of Eis attacked only once, that line does not meet E. All diagonals 

from occupied squares meet E, so the line is a row or a column_ But a row or column 

that does not meet E also does not meet U, and we have shown that the rows and 

columns not meeting U each contain only one queen, so no line contains two queens. 

Therefore R is independent, and (b) is also established. 

We now shown - 3 (mod 4). Let D denote the set of squares of E that lie below 

the long negative diagonal ofU. Let L denote the set of occupied squares that lie below 

the extension of the same diagonal to then x n board. Each queen of R attacks exactly 

one square of D along its positive diagonal. Each of the 2( n - j) queens outside U 

attacks exactly one square of D by row or column. Each of the queens inside U attacks 

exactly two squares of D by row or column. Finally, each queen of L attacks exactly 

two squares of D along its negative diagonal, and other queens do not attack squares 

of D along their negative diagonals. Since each of the 2j - 3 squares in Dis attacked 

exactly once, we have 

1 1 
2(n - 1) + 2(n - j) + 2[2(n -1) - 2(n - j)] + 2ILI = 2J - 3. 

This reduces ton= 4ILI + 3, son_ 3 (mod 4) and Hn - 1) is odd. 

Suppose that j is even. Then the set E contains equal numbers of even and odd 

squares. Since j is even, any occupied row or column that meets E does so at one 

even and one odd square. Thus the subset of E consisting of those squares that are 

attacked diagonally must contain equal numbers of even squares and odd squares. This 

implies that the number of queens on even squares equals the number of queens on odd 

squares, and thus the total number of queens is even. But the total number of queens 

is ~ ( n - 1 ), which is odd_ This contradiction implies that J is odd. D 
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Chapter 2 Lower bounds for the domination number of Qn 

Corollary 2.3 For each non-negative integer k, 'Y(Q4k+l) ;::: 2k + 1. 

Proof. From Theorem 2.1 we have 'Y(Q4k+l) 2': 2k, but from Theorem 2.2 (1) equality 

cannot hold, therefore 'Y(Q4k+1) 2': 2k + 1. D 

10 



Chapter 3 

Known values of the domination 

and independent domination num-

hers of Qn 

In this chapter we list the known values of 1 and i and describe how they are deter­

mined. We also describe how to obtain all non-isomorphic minimum dominating sets 

for Qs. 

Tables 3.1 and 3.2 give the known values for 1 and i. For n :::; 3 we have 1( Qn) = 

i(Qn) = 1. For n < 5, optimal placements are easily discovered by trial. 

Most of the values of 1 are established by a placement which attains some lower 

bound. With Spencer's bound, i(Qn) 2: 1(Qn) 2: Hn - 1), 1(Q11) = i(Q11) = 5 

is established. However, n = 3 and n = 11 are the only values known for which 

this bound holds exactly. If n is even Spencer's bound becomes 1( Q2m) 2: m, and 

this together with dominating sets of the rquired size establishes values for 1 for n = 

4, 6, 10, 12, 18 and 30. The value 1(Q18) = 9 was determined by A. McRae [IO] , 

and we will explain in Chapter 4 how the value 1( Q30) = 15 is obtained. The bound 

1( Q4k+l) 2: 2k + 1 togetller with dominating sets of this size establish values for 
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Chapter 3 Known values of the domination and independent domination numbers of Qn 

I for 1 ~ k ~ 15 (the case I (Q1 ) = 1 being trivial) as well as k = 17 and 19. 

Weakley [17] claimed k = 3, 4, 5, 6 and 8, the values fork = 9, 12, 13 and 15 were 

determined in [5] while Gibbons and Webb [ll] claimed k = 7, 10, 11 and 14. We 

will explain in Chapter 4 how these values, including the new values fork = 17 and 

19, are determined. The exceptional value 1(Q8 ) = 5 is claimed by WW Rouse Ball 

[1] , and Weakley [17] proved 1( Q7 ) = 4 of which we will give an alternative proof 

in Chapter 5. The values 1(Q19 ) = 10and1(Q31 ) = 16 are also explained in Chapter 

5_ 

n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 30 31 

I 2 3 3 4 5 5 5 5 6 7 7/8 819 8/9 9 9 10 15 16 

i 3 3 4 4 5 5 5 5 7 7 8 9 9 9 

Tuble 3.1 Known values for/ and i 

k 5 6 7 8 9 10 ll 12 13 14 15 17 19 
n 21 25 29 33 37 41 45 49 53 57 61 69 77 
I 11 13 15 17 19 21 23 25 27 29 31 35 39 
i 11 13 17 23 

Tuble 3.2 Known values for/ and i 

From Table 3.1 we can see that there are only three values of n for which it is 

known that 1(Qn) < i(Qn)- The value i(Q12 ) = 7 (see [3]) is obtained by doing 

an exhaustive search on all independent sets of six queens, showing that i( Q12 ) f' 6. 

Gibbons and Webb [11] did the same to establish the values ofi for n = 14, 15 and 

16. 

To confirm the values of I in Tables 3 .1 and 3 .2 we need to give some placements 

of dominating sets. All possible minimum dominating sets of Qn up ton= 11 can be 

found by computer, simply by checking all possible placements of queens. For n 2". 5, 

all possible solutions, up to symmetry, are listed in Appendix A. Gibbons and Webb 
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Chapter 3 Known values of the domination and independent domination numbers of Qn 

E A 

G 

Figure 3.1 Reflections of the chessboard 

determined all possible placements of minimum independent dominating sets up to 

n = 15. If the number of dominating sets is small, reflections and rotations can be 

eliminated by hand. However, for n = 8, there are 638 different optimal dominat­

ing sets. To ensure that no reflections or rotations of dominating sets are repeated, 

dominating sets for n = 8 are oriented so that: 

(1) most (three or more) of the queens are in the lower half of the board; 

(2) most of the queens are in the left half of the board; 

(3) most of the queens are on or below the positive main diagonal. 

Note that (1) ensures that reflections about CD (see Figure 3.1) and 180° rotations are 

not repeated and (2) ensures that reflections about AB are not repeated. (1) combined 

with (2) ensures that 90° and 270° rotations as well as reflections about EH are not 

13 



Chapter 3 Known values of the domination and independent domination numbers ofQn 

repeated. Note that all these symmetries are eliminated, because n is even and the 

number of queens is odd. The only symmetry left, is the reflection about FG, most 

of which are eliminated by (3). The reflections which (3) does not eliminate are the 

dominating sets with an odd number of queens on the positive diagonal with the same 

number of queens below and above the concerned diagonal. In this case we listed the 

first dominating set according to the lexicographic ordering of ordered pairs. 

We now give dominating sets of Qn for those values of n listed in Table 3. I, where 

13 s; n s; 25. Where sets are symmetric, i.e. for Q 13, Q15, Q17, Q21 and Q25 , 

the centre square has coordinates (0, 0), otherwise the lower left comer square has 

coordinates(!, 1). Where')'(Qn) = i(Qn), welisttheindependentset. The dominating 

and independent dominating sets for Q12 can be obtained by simply adding a queen 

(respectively two independent queens) to the minimum dominating set for Qu given 

in Appendix A. Dominating sets for n 2:: 29 are listed in Chapter 4. 

Q13. ±(1, -5), ±(3, -1), ±(5, 3), (0, 0). 

Q14· (2, 6), (4, 14), (6,4), (8, 10), (10, 2), (12, 8), (13, 1), (14, 14). 

Q15. ±(1, 3), ±(3, 7), ±(5, 1), ±(7, -5), (0, 0). 

Q16. (1, 13), (3, 7), (5, 1), (7, 5), (8, 8), (9, 11), (11,15), (13, 9), (15, 3). 

Q11. ±(2, 4), ±(4, -8), ±(6, 2), ±(8, -6), (0, 0). 

Q18 . (2, 10), (4, 16), (6, 2), (8, 12), (10, 8), (12, 4), (14, 14), (16, 18), (18, 6). 

Q21· ±(1, 3), ±(3, 9), ±(5, -7), ±(7, -1), ±(9, 5), (0, 0). 

Q25. ±(1, 5), ±(3, 11), ±(5, -1 ), ±(7, 9)' ±(9, -7), ±(11, 3)' (0, 0). 

14 



Chapter 4 

Domination on Q4k+1 

In this chapter we consider dominating sets for Q4k+l with one queen in every sec­

ond row and column. Figure 4.1 is an example of such a set. Such dominating sets 

have 2k + 1 queens, therefore reach the bound 1(Q4k+t) ::'.:'. 2k + 1. Thus finding such 

sets for a specific k establishes 1(Q4k+i) = 2k + 1 for that k. Since the case k = 0 is 

trivial, we will assume henceforth that k ::'.:'. 1. 

We label the rows and columns of the chessboard as illustrated in Figure 4.1. A 

row or column is called even (respectively odd) if it has an even (respectively odd) 

label. A square of the chessboard is called even-even, even-odd, odd-even, or odd-odd 

according to the labels of its row and column. With queens on every even row and 

column all the squares in one of these rows or columns are dominated. Hence the only 

squares that need to be considered are the odd-odd squares (shaded in Figure 4.1 ), that 

must be dominated diagonally. We can simplify the representation by drawing only 

the odd-odd squares. (See Figure 4.2). Imagine that the even rows and even columns 

are squeezed to be only lines. Place the simplified board on the x-y-plane with the 

centre of the board at coordinates ( 0, 0) and the lines formed by the even rows and 

columns at unit lengths from each other. The diagonals (of squares) that rise from left 

to right correspond to the straight lines with equations y = x + d, where d E {-(2k -

1), ... , -1, 0, 1, ... , 2k - 1}. These diagonals orlines, which we use interchangeably, 

15 
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Chapter 4 Domination on Q41;+i 

Figure 4.1 A dominating set for Q13 

are called d-diagonals and are labelled d = -(2k - 1), ... ,d = -l,d = O,d = 

1, ... , d = 2k - 1 according to their intersections with the y-axis. Similarly, the s­

diagonals fall from left to right, and correspond to the straight lines with equations 

y = -x+s, s E {-(2k-1), ... , -1, 0, 1,. .. , 2k-1} and are also labelled according 

to their intersections with the y-axis. An even (odd) diagonal is a diagonal with an 

even (odd) intersection with the y-axis. Notice that a queen that lies on an odd (even) 

d-diagonal, also lies on an odd (even) s-diagonal and vice versa. Sometimes we will 

refer to queens on odd (even) diagonals as odd (even) queens. As in the case of squares 

of the chessboard, a queen in the simplified representation is called even-even, even­

odd, odd-even or odd-odd according to the parity of its coordinates. By a point on a 

d-diagonal (ors-diagonal) we mean an intersection point of its corresponding line 

and a line formed by an even row or column. 

16 



Chapter 4 Domination on Q4k+l 

3 

2 

2 3 

-2 

- 3 

Figure 4.2 Simplified representation of Q 13 

Notice that the difference between the y and x coordinates of any point on a d­

diagonal is equal to its label. Similarly the sum of the coordinates of any point on 

the s-diagonals is equal to its label. Figure 4.3 illustrates these concepts for a general 

board. 

Henceforth, when we refer to a dominating set D ofQ4k+b we assume that, unless 

stated otherwise, JD j = 2k + 1 and that there is one queen on each even row and each 

even column. According to the representation of Q4k+1 described above, we consider 

these queens to be placed on points on the diagonals ofQ4k+l· The coordinates of the 

queens are then the coordinates of the points (in the plane) on which they are placed. 

Notice that a queen with coordinates (2x, 2y) on the normal chessboard has coordinates 

(x, y) on the simplified representation. Henceforth, when we refer to coordinates, 

unless stated otherwise, it will be of the simplified representation. We now prove some 

properties of such dominating sets of Q4k+l· Some of these results were also reported 

17 



Chapter 4 Domination on Q4k+1 

-k 

Figure 4.3 Numbering of diagonals 

in [5]. 

4.1 Properties of dominating sets 

Lemma 4.1 [5] If Dis a dominating set of Q4k+1 and there are no queens on d = i 

(respectively s = i), then there must be queens on: 

s(d) = o, ±2, ±4, ... , ±(i- 1), ±(i + 1), ... , ±(2k - Iii - 1), 

s(d) = ±1, ±3,. .. , ±(i -1), ±(i + 1),. .. , ±(2k - Iii - 1), 

18 
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d=i 

s = 2k- i-1 

s=2k-i-3 
. - i 

s = -2k +i +3 

s = -2k + i + 1 

i - k s=i+l 

s=i-l 

Figure 4.4 Squares not dominated by d-diagonal must be dominated by s-diagonal 

Proof. All squares concerned must be dominated diagonally. Thus if a square is not 

dominated by ad-diagonal, it must be dominated by ans-diagonal and vice versa. (See 

Figure 4.4) D 

A diagonal which does not contain a queen is called an empty diagonal. Beginning 

with the diagonals s = 0 and d = 0, a dominating set with the first empty s-diagonal 

s = i or s = -i and the first empty d-diagonal d = j or d = - j is called an ( i, j)­

dominating set, i, j 2 0. We now show that with respect to the first empty diagonals 

there are only two types of dominating sets. 

Theorem 4.2 [5] There are precisely two types of dominating sets: 

(a) ( i, i)-dominating sets with queens on the diagonals 

s, d = o, ±1, ±2, ... , ±(i - 1), ±(i + 1), ... , ±(2k - Iii - 1). (4.1) 

(b) ( i, i + 2)-dominating sets with queens on the diagonals 

d = o, ±1, ±2, ... , ±i, ±(i + 1), ±(i + 3), ... , ±(2k - Iii - 1). (4.2) 
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s = o, ±1, ±2, ... , ±(i - 1), ±(i + 1), ... , ±(2k - Iii - 3). (4.3) 

Proof. Without loss of generality we can assume that the first empty diagonals are 

positive, because the set of queens can be rotated and/or "flipped". If Dis an (i, i)­

dominating set, it follows from Lemma 4.1 and the fact that s = i and d = i are the 

first empty diagonals that there are queens on the diagonals in (4.1). (See Figure 4.2 

for an example of a (1,1)-dominating set.) 

Now suppose D is an ( i, j)-dominating set with j > i. Because d = j > i is 

the first empty d-diagonal, there are queens on d = 0, ±1, ±2, ... , ±i. Also, because 

s = i is empty it follows from Lemma4. l thatthere are queens on d = ±(i+ 1), ±(i+ 

3), ... , ±(2k-lil-1 ). This gives (1 +2i) + (2k-2i) = 2k+ 1 d-diagonals containing 

queens. But there are only 2k+ 1 queens available. Thus (4.2) are the only d-diagonals 

containing queens, so that j = i + 2. Since d = i + 2 is empty and s = i is the first 

empty s-diagonal it follows from Lemma 4.1 that there are queens on the diagonals 

listed in (4.3). (See Figure 4.5 for an example of an (1,3)-dominating set.) D 

Lemma 4.3 [5] If Dis a dominating set of Q4k+i, then there is a one-to-one corre­

spondence between even-odd and odd-even queens. 

Proof. Consider all the x-coordinates and all they-coordinates of queens in D. Since 

each integer in the set { -k, ... , -1, 0, 1, ... , k} occurs as x-coordinate of some queen 

and as y-coordinate of a (possibly different) queen, there are just as many even (odd) 

x-coordinates as even (odd) y-coordinates. Thus there is a one-to-one correspondence 

between even-odd and odd-even queens. D 

Lemma 4.4 If Dis a dominating set of Q4k+1• the numbers of even-even and odd­

odd queens differ by one. 

Proof. Consider all the x-coordinates and all they-coordinates of queens in D, namely 

{-k, ... , -1,0, 1, ... ,k}. Depending on the parity of k, there are either one more 
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Figure 4.5 Simplified representation of Q 17 

even coordinate than odd coordinates or vice versa. Thus because there are just as 

many even-odd queens as odd-even queens (Lemma 4.3), the number of even-even 

and odd-odd queens must differ by one. D 

Depending on the parity of i, there are either more odd queens or more even queens 

in a dominating set D of Q4k+1 (See Theorem 4.2). Call the smaller of these sets 

the core of D, and the bigger one the body of D. The core diagonals (respectively 

body diagonals) are the diagonals listed in Theorem 4.2 with core (respectively body) 

queens on it. Note that there can be core (body) queens that are not on the core (body) 

diagonals. 

Lemma 4.5 If D is an ( i, i)-dominating set, then there are i - 1 core s ( d)-diagonals 

and 2k - i body s (d)-diagonals. 

Proof. There must be queens on s(d) = 0, ±1, ±2,. . ., ±(i - 1), ±(i + 1),. .. , 
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±(2k - i - 1). If i is even the core diagonals are 0, ±2, ±4, ... , ±(i - 2) and the 

body diagonals are ±1, ±3, ±5, ... , ±(2k - i - 1). This gives i + 1and2k - i core 

and body diagonals respectively. Similarly, if i is odd we get the same numbers of 

diagonals. D 

Consider an (i, i)-dominating set D. If there are only i-1 queens in the body, there can 

only be one queen on each core diagonal. We then say the core is restricted. Similarly, 

if there are only 2k - i queens in the body we say the body is restricted. If the body 

(respectively core) has more than 2k - i (respectively i - 1) queens we say the body 

(respectively core) is relaxed. 

Lemma 4.6 If Dis an (i, i)-dominating set then either the core or the body is re­

laxed. 

Proof. There are 2k + 1 queens and 2k-1 s (d)-diagonals that must contain queens. 

Therefore there are two extra queens. If i is even, there is an even number of body 

diagonals, namely 2k - i odd s ( d)-diagonals. Because there must be an even number 

of odd queens (Lemma 4.3), both or none of the two extra queens must be in the body. 

If i is odd, the number of odds (d)-diagonals is also even, namely i -1 (in the core). 

Again to keep the number of odd queens even, both or none of the two extra queens 

must be in the core. D 

4.2 Description of Algorithm 

For each k, i and type of dominating set D of Q4k+1 we run a different programme. 

The algorithm considers all possibilities of placements of queens on s-diagonals, elim­

inating non-dominating sets as soon as possible. The fact that there is only one queen 

per s-diagonal and d-diagonal speeds up the programme considerably. We treat ( i, i) 
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and (i, i + 2) sets slightly differently: 

(i, i + 2)-dominating sets: We have queens on the diagonals listed in (4.2) and (4.3). 

Since there are 2k + 1 d-diagonals containing queens, there is only one queen on each 

d-diagonal listed and no queens on any other d-diagonals. There are 2k-3 s-diagonals 

that must contain queens. That leaves four extra queens that can be either on diagonals 

listed in (4.3) or on others-diagonals. The algorithm considers all possibilities of one 

queen on each s-diagonal listed in ( 4.3), making sure there are not more than one queen 

on any d-diagonal, row or column_ That will leave four d-diagonals (two in the body 

and two in the core) listed in (4.2) without queens. We then try to place the remaining 

four queens on these d-diagonals. See Programme 1 in Appendix B for an example 

programme. 

( i, i)-dominating sets: Either the core or the body must be relaxed. The algorithm 

considers all possibilities of one queen on each s-diagonal listed in (4.1 ), making sure 

there are not more than one queen on any d-diagonal, row or column. However, in 

the relaxed part (body or core) we allow on two occasions any one of the following 

relaxations: (1) a queen on the same d-diagonal than a queen already placed or (2) a 

queen that is not on ad-diagonal listed in ( 4.1 ). We then try to place the remaining two 

queens. If the core is restricted we can determine first if such a core is possible. (For 

example, there are no restricted core sets for i = 7.) 

4.3 Results 

We did a computer search for ( i, i + 2) and ( i, i)-dominating sets and found dominating 

sets for all k up to k = 14. Several of these are asymmetric sets not found before, 

including independent sets for Q45 . Tables 4.1and4.2 give the number of (i,i + 2) 

and ( i, i) dominating sets found. 
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With a computer search we found that for k = 8 and k = 11 some sets are inde­

pendent, establishing i(Q33 ) = 17 and i(Q45 ) = 23. We also searched for sets that 

dominate an additional row and column, and found two such sets for k = 7, estab­

lishing "Y(Q30 ) = 15. We now give a list of coordinates of minimum dominating sets 

for 7 ::; k ::; 14, confirming some of the results in Tables 3.1and3.2. For Q33 and 

Q45 we give independent sets. We give only the corresponding y-coordinates of the 

x-coordinates (-k, ... , -1, 0, 1, ... , k), where the coordinates correspond to those of 

the simplified representation as illustrated in Figure 4.2. 

Q 29 . (0, 5, -4, 1, -3, 9, -6, 2, -1, -7, 8, 3, -2, -5, 4). This also dominates Q3o· 

Q33· (4, -3, -8, 3, 6, -2, -6, 2, -1, -7, 8, 5, 1, -5, 0, 7, -4). 

Q37· (-2, 3, 6, 9, -8, 5, -4, -7, 1, 0, -1, 7, 4, -5, 8, -9, -6, -3, 2)_ 

Q41· (-2, -5, 8, 5, -6, 9, 6, -7, 1, -3, -8, 0, 3, -9, 10, 7, -10, 4, 2, -1, -4). 

Q45. (6, -5, 0, 5, -6, -11, 10, 7, -3, 2, -10, -2, 3, -9, -1, 11, 8, -7, 4, 1, -8, 9, -4) 

Q49· (-5, 6, -1, 10, -7, 4, -8, -2, -9, 12, 11, 3, 0, -3, -11, -12, 9, 2, 8 ,-4, 7, -10, 1, 

-6, 5). 

Q53 . (-6, 12, -2, -5, -8, 9, 4, 13, 10, 7, -1, 11, 3, 0, -3, -11, 1, -7, -10, -13, -4, -9, 8, 

5, 2, -12, 6) 

Q57• (6, -7, 10, 7, -8, 3, 8, -13, -10, 9, -6, -11, -1, 4, -12, 0, -3, 13, 1, 5, 14, 11, 

-14, 12, -4, -9, 2, -5, -2). 

We note that many of the dominating sets listed in Tables 4. 1 and 4.2 are 180°­

symmetric. Much bigger sets can be searched for if we restrict our search to 180°­

symmetric sets and even bigger sets if we restrict our search to 90° -symmetric sets, 

which will be considered in the next two sections_ 

4.4 180°-symmetric dominating sets 

The following results concern 180° -symmetric sets, that is, placements of queens that 
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k I n I (1,3) I (2,4) I (3,5) (4,6) (5,7) 
2 9 0+1 
3 13 0+2 1+0 
4 17 0+4 none 1+0 
5 21 0+3 1+2 0+1 none 
6 25 0+2 0+2 none 1+0 none 
7 29 none 0+3 0+3 none none 
8 33 none 0+11 2+2 none none 
9 37 none 12+0 4+48 none none 
10 41 none 0+109 0+25 none 
11 45 none 0+165 0+68 0+50 
12 49 none none 36+672 0+85 

I 14 I 57 I 
*Number of sets found in first two hours 

I o+30* I 

Tuble 4.1 Number of symmetric+ asymmetric (i, i + 2)-dominating sets found 

I k I n I (1,i) I (2,2) I (3,3) I (4,4) I (5,s) I (6,6) 
2 9 l+O 
3 13 1+0 l+O none 
4 17 3+0 4+0 none 
5 21 none 2+1 2+0 none 
6 25 none 3+0 3+1 none 
13 53 164+196 

Tuble 4.2 Number of symmetric+ asymmetric ( i, i)··dominating sets found 
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are invariant under a rotation of 180° of the board. We note that since there is only one 

queen on each row and column, it follows that a 180°-symmetric dominating set must 

have a queen on (0,0). 

Lemma 4.7 If Dis a 180°-symmetric dominating set of Q4k+l• the number of pairs 

of queens on odd diagonals is even. 

Proof. By Lemma 4.3 there is a one-to-one correspondence between even-odd and 

odd-even queens. Because D is symmetric, for each even-odd queen there is another 

even-odd queen. The same holds for each odd-even queen. But the even-odd and odd­

even queens lie on the odd diagonals and it follows that there is an even number of 

queens on odd diagonals. 

Theorem 4.8 If Dis a l80°-5J1111metric (i, i + 2)-dominating set with 

(a) i even, then k - !i is even 

(b) i odd, then ! (i + 1) is even. 

Proof. Consider an ( i, i + 2)-dominating set: 

0 

(a) i even: By Theorem 4.2 the number of pairs of queens on odd d-diagonals is 

k - ~i. By the labelling of the diagonals , if a queen is on an odd d-diagonal it is also 

on an odd s-diagonal. Therefore the total number of pairs of queens on odd diagonals 

is k - ti. By Lemma 4.7, k - ~i is even. 

(b) i odd: Again, by Theorem 4.2, the number of pairs of queens on odd diagonals 

is ! ( i + 1). Thus the total number of pairs of queens on odd diagonals is ! ( i + 1) and 

it follows from Lemma 4.7 that t(i + 1) is even. D 

Theorem 4.9 If Dis an 180°-symmetric (i, i)-dominating set, then: 

1. The body is restricted if: 

(a) iis odd and ~(i - 1) is odd 

(b) i is even and k - ti is even. 
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k n 'Y I type I No of sets I 
15 61 31 (6,6) 358 
17 69 35 (6,8) 3282 
19 77 39 (8,8) 14552 

Tuble 4.3 Symmetric dominating sets found 

2. The core is restricted if: 

(h) i is odd and ~(i - 1) is even 

(c) i is even and k - ~i is odd. 

Proof. By Lemma 4.6 either the body or the core is relaxed. 

Ifi is odd, the core diagonals are odd. By Lemma 4.5 there are i-1 core diagonals. 

Since there must be an even number of pairs of queens on odd diagonals (Lemma 

4.7), the core is restricted if Hi - 1) is even, and the core is relaxed (i.e. the body is 

restricted) if~ ( i - 1) is odd. 

Ifi is even, the body diagonals are odd. By Lemma 4.5, there are 2k - i body diag­

onals. Again, since there must be an even number of pairs of queens on odd diagonals, 

the body is restricted if k- ~i is even, and the body is relaxed (i.e. the core is restricted) 

if k - ~i is odd. o 

4.5 Results for 180°-symmetric dominating sets 

The algorithm for finding symmetric dominating sets is the same as for asymmetric 

sets, except that only half the queens need to be considered and there are restrictions 

on the values of k and i, as seen in the theorems above. Table 4.3 shows values of k 

for which minimum dominating sets were found that were not found while searching 

for asymmetric dominating sets. None of these sets are independent, or cover a bigger 

board (i.e. two or more extra edges). 
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We now give a list of coordinates of queens for the cases k = 15, 17 and 19, con­

firming the results in Tables 3_2 and 4-3_ Note that the sets found for Q69 and Q77 

determine the new domination numbers 'Y (Q69 ) = 35 and 'Y (Q77) = 3g_ Since the 

dominating sets are symmetric, we give only the corresponding y-coordinates of the 

x-coordinates (0, 1, 2, ... , k). 

Q61- (0, -3, -11, 1, 15, 12, -13, 8, 5, 14, -7, -10, -4, -2, -9, 6)-

Q69- (0, 3, 15, -1, 10, 16, 13, 8, 17, 14, 7, -4, -9, -12, -5, -2, -11, -6) 

Q17. (0, -3, 17, 14, 2, -1, 19, 16, -9, 12, 5, 18, -15, -6, 13, -8, -11, -4, -7, -10) 

4.6 90°-symmetric dominating sets 

We now consider go0 -symmetric sets, that is, placements of queens that are invariant 

under a go0 rotation (say anti-clockwise) of the board_ 

Lemma 4.10 If Dis a go 0 -symmetric (i, i)-dominating set, then k is even. 

Proof. There are 2k + 1 queens in D. There is one queen on (0,0), and the remaining 

2k queens must be a multiple of four_ Therefore k must be even_ D 

Lemma 4.11 If D is a go 0 -symmetric dominating set, then (queen on (0, 0) ex­

cluded): 

(a) The number of odd-odd queens equals the number of even-even queens and is 

a multiple of four. 

(b) The number of even-odd queens equals the number of odd-even queens and is 

even. 

Proof. Because Dis go0 -symmetric, each queen (except (0,0)) has three other cor­

responding queens, i.e. if there is a queen on (x, y), there must also be queens on 
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(-x, -y), (-y, x) and (y, -x). Thus it follows that the number of even-even and 

odd-odd queens is a multiple of four. Also, the number of even-odd queens equals the 

number of odd-even queens. Consider all the coordinates ((0,0) excluded) of D. If k is 

even we notice that the number of even x, odd x, even y and odd y coordinates are all 

equal (to k). Thus if the number of even-odd queens equals the number of odd-even 

queens, the number of even-even and odd-odd queens must also be the same. D 

Lemma 4.12 If D is a go0 -symmetric dominating set, then (queen on (0, 0) ex­

cluded) the number of even queens is a multiple of eight and the number of odd queens 

is a multiple of four. 

Proof. The result follows directly from Lemma 4.11. D 

Lemma 4.13 If D is a go0 -symmetric dominating set, then 'Ji:tble 4.4 sums up the 

possible values of k for different values of i, and states whether the body or core is 

relaxed. 

i k jrelaxj 
Sm-3 4n+2 body 
Sm-2 not possible 
Sm-1 4n core 

Sm 2n core 
Sm+l 4n body 
8m+2 2n body 
8m+3 4n+2 core 
8m+4· not possible 

Tuble 4.4 Values fork for different i 

Proof. i even: If i is even, then there are i - 2 even s (d)-diagonals (0-diagonal 

excluded) in the core and 2k - i s (d)-diagonals in the body (Lemma 4.5). Either the 

core or the body must be relaxed (Lemma 4.6). Ifwe relax the core there are i queens 

in the core ((0,0) queen excluded) and 2k - i queens in the body. By Lemma 4.12, i 
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must be a multiple of eight, and 2k - i a multiple of four, proving the case i = Sm_ If 

we relax the body, i - 2 must be a multiple of eight and 2k - i + 2 a multiple of four, 

proving the case i = Sm + 2. All other even values of i are impossible_ 

i odd: For i odd there are i - 1 odds (d)-diagonals in the core and 2k - i - 1 even 

s (d)-diagonals in the body (0-diagonal excluded). Ifwe relax the core, i + 1 must be 

a multiple of four and 2k - (i + 1) a multiple of eight. There are two possibilities: (!) 

If i + 1 = Sm, then k must be a multiple of four, proving the case i = Sm - L (2) 

If i + 1 = Sm+ 4, then 2k - Sm+ 4 must be a multiple of eight, i.e. k = 4n + 2, 

proving the case i = Sm+ 3. Similarly, if we relax the body, i - 1 must be a multiple 

of four and 2k - ( i - 1) a multiple of eight. Again there are two possibilities, namely 

i - 1 = Sm and i - 1 = Sm - 4, giving k = 4n and k = 4n + 2 respectively, which 

prove the cases i = Sm - 1 and i = Sm - 3. D 

From Figure 4.6 we see that a set of four queens which is 90°-symmetric can be placed 

in two different ways and still dominate the same squares. Therefore, we only need 
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to consider one eighth of the board, because if we, for example, consider the positive 

quadrant we can always choose the queens so that the x-coordinates are bigger than 

they-coordinates in the positive quadrant. 

4. 7 Results for 90° -symmetric dominating sets 

Unfortunately, we were unable to find such dominating sets. It may be possible to find 

solutions for larger values of n by using faster computers. 
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Domination on Q 4k+3 

The only values known for n up to now for which 'Y(Qn) = ~(n - 1) are 3 and 11. 

Theorem 2.2 by Weakley describes some properties of such sets. Firstly, n = 3 (mod 4). 

Thus we only have to search for sets satisfying 'Y(Q4k+3 ) = 2k + 1. In this chapter we 

try to determine whether there exist more such dominating sets. We begin by showing 

'Y(Q4k+3 ) > 2k + 1for3:::; k :::; 7. We then consider sets that dominate only the edge. 

Finally, we introduce the concept of the radius of a queen to study the distribution of 

dominating sets. 

Another property of the concerned dominating sets proved in Theorem 2.2 is that 

there exists a j x j sub-board U for some odd integer j ( ~ ( n + 1) :::; j :::; n) so that 

each edge square of U is dominated exactly once. Thus for each board we consider 

the possible j x j sub-boards separately. In order to reduce computer time, we will 

first determine on which sets of rows (columns) dominating sets could possibly be 

found. Place the board on the x-y-plane with the centre of the j x j sub-board at the 

coordinates (0, 0). As before we will refer to the board squares by the coordinates of 

their centres. Notice that the centre of the j x j sub-board and the centre of the entire 

board do not have to be the same square. Let l = ~ (j - 1); then the edge squares of 

the sub-board are on squares with their x or y coordinates equal to l. The following 

lemmas and theorems concern rows and columns intersecting the j x j sub-board. 
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Figure 5.1 If x = a is empty, then y = a or y = -a is also empty. 

Thus for all a and b mentioned, -l + 1 :"'.: a, b :"'.: l - 1. Also, when we refer to a set 

S, we mean a set of queens with cardinality 2k + 1 on Q4k+3 , k :::: 3, which dominates 

the edge of the j x j sub-board (j = 21 + 1). 

Lemma 5.1 For a set S, if x = a (respectively y = a) is empty, then y = a or 

y = -a (respectively x = a or x = -a) must also be empty. 

Proof. Suppose y = a and y = -a are both occupied. Then d = -l - a and 

s = -l +a must be empty (see Figure 5.1). But then (a, -l) is not dominated. Thus 

y = a or y = -a must be empty. D 

Lemma 5.2 For a set S, if x = a is occupied, then y - a or y - -a is also 

occupied. 

Proof. Suppose y = a and y = -a are both empty. Because x = a is occupied both 

s = a+ l and d = l - a must be empty (see Figure 5.2). This means d = a - l and 
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Figure 5.2 If x = a is occupied, then y = a or y = -a is also occupied. 

s = -a - l must be occupied. But then (-a, -l) is dominated twice. Thus y = a or 

y = -a is occupied. D 

Lemma 5.3 For a set S, if x = ±a is occupied, then y = ±a is occupied 

Proof. Suppose x = ±a is occupied and, without loss of generality, y = a is empty. 

But if y = a is empty, then from Lemma 5.1 x = a or x = -a must be empty. This is 

a contradiction, thus y = ±a must be occupied .. D 

Lemma 5.4 If for a set S, the set of rows is symmetric, then the set of columns is the 

same as the rows. 

Proof. Because there are just as many rows containing queens as columns containing 

queens, we only have to show that for each x = ±a that is occupied, y = ±a is also 
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Figure 5.3 (a+b l - b-a) and (a+b -l + b-a) must be dominated by row or column 
2 ) 2 2 ' 2 . 

occupied. This follows directly from Lemma 5 .3, thus the lemma is proved_ D 

Theorem 5.5 If for a set S, x = a and x = bare occupied, with a < band a + b 

even, then if : 
(1) x = "!b is empty. and 

(2) x = l - b2a or x = -l + b2a is empty. 

then S is not dominating. 

Proof. If x = a and x = bare occupied, then the squares ( "!b, l - b2a) and ( "!b, -l + 
b2") must be dominated by row or column (see Figure 5.3). If x = l - b2a or x = 

-l + b2a are empty, then from Lemma 5_ l y = l - b2a or y = -l + b2a is also empty. 

Thus if x = a!b is empty and x = l - b2a or x = -l + b2a are empty, ( "!b, l - b2") 

and (a!b, -l + b2") can not be dominated. D 

35 



Chapter 5 Domination on Q4k+3 
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Figure 5.4 (-"!b, l - b2") and(-~, -l + b2") must be dominated by row or col­
umn. 

Theorem 5.6 If for a set S, x = a and x = bare occupied, with a < band a+ b 

even, then if: 

(!) x = -a or x = -bis occupied, and 

(2) x = -~ is empty, and 

(3) x = -l + b2a or x = l - b2a is empty, 

then S is not dominating. 

Proof. Suppose there are queens on x = a, x = b and, without loss of generality, 

x = -a. Thens = -l - a and d = l +a are empty (see Figure 5.4). Because x = b 

is occupied, y = b or y = -b must be occupied (Lemma 5.2). Thus d = -l + b 
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j = 31 0,3,5,6,8, 11, 13, 14 
0,3,4,6, 7,10, 13, 14 
0,2,5, 7,9, 11,12, 14 
0,2,4,6,8, 10, 12, 14 
0, 1,5,6,7, 11, 12, 13 
0, 1,4,5,8,9, 12, 13 

0, 1,2,8,9, 10, 11, 12 
0,1,2,3,4,5,6,7 

j = 29 0,3,6,9, 10, 12, 13 
0,2,4,6,9, 11, 13 
0,2,3,5,8, 10, 13 

j = 27 0,3,6,9,11,12 
0,2,5, 7,9, 12 
0,3,4,7,8,11 

j = 25 0,2,4,9,11 
0,3,5,8,11 
0,3,4, 7, 10 

Thble 5.1 Possible rows containing queens for different subboards of Q31 

or s = l - b must be empty. This means (- "!b, l - b2a) or (- "!b, -l + b2a) is 

not dominated by diagonal, but by row or column. Thus if x = - ~ is empty and 

x = -l + b2a or x = l - b2a is empty, the set can not be dominating. D 

By using the above theorems, we can use a computer to find permissible sets of rows 

for dominating sets. For a specific board we run a different programme for each per­

missible sub-board (Theorem 2.2). The algorithm simply generates all possible sets 

of rows and eliminates sets that cannot be dominating sets according to Theorems 5. 5 

and 5.6. As expected, the row pattern with queens in every second row and column 

was found when j = n. As an example, Table 5.1 shows the possible sets of rows 

(columns) for different sub-boards for Q31 . In this case the sets are symmetric, thus 

we only give the non-negative rows (columns). 

For those sets that are symmetric, it follows from Lemma 5 .4 that the set of columns 
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is the same as the rows. The following observation eliminates even more sets of rows 

(columns): Consider a queen directly outside the j x j sub-board_ It dominates three 

consecutive edge squares. The middle one by row (column) and the other two diago­

nally Thus if j < n, then there must exist at least two rows and columns with queens 

on them, but with no queens on the rows( columns) directly next to them. Similar elim­

inations can be made by considering queens inside the sub-board. 

Ifwe know all the rows (columns), it reduces the time for the computer search for 

dominating sets considerably, especially because we also know which edge squares 

of the sub-board must be dominated diagonally_ Thus for each occupied row, there 

are only a few possible positions for a queen. Programme 3 in Appendix B is an 

example programme for the case n = 31 and sub-board j = 29 (with the sub-board 

placed in the centre) for a specific row pattern. Note that it must also be taken into 

account that the sub-board can be off-centre_ The algorithm considers all possible 

placements of queens (on permissible rows and columns) on the board by first finding 

placements of the queens outside the sub-board (if any) and then the queens inside. It 

then eliminates sets that dominate some edge square of the sub-board more than once as 

soon as possible. (Such sets cannot be dominating, because by Theorem 2.2, each edge 

square of the sub-board must be dominated exactly once_) If a set that dominates the 

edge of the sub-board is found, it can easily be checked whether it also dominates the 

rest of the board. As expected, the algorithm found all the so-called "edge dominating 

sets" with queens in every second row and column, where 2 :::; k :::; 6, discussed later 

in this chapter (see Table 5.2). 

We only checked boards up ton = 31, and found' no dominating sets. We can now 

state the following. 

Theorem 5.7 For 3:::; k:::; 7, --y(Q4k+3) > 2k + 1. D 
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k 2k + 1 4k +3 no of sets ~'L,R 
1 3 7 none 
2 5 11 1 8 
3 7 15 1 16 
4 9 19 none 
5 11 23 2 40 
6 13 27 40 56 
7 15 31 none 
8 17 35 90 96 
9 19 39 272 120 
10 21 43 none 
11 23 47 3728 176 
12 25 51 many 208 

Tuble 5.2 Number of edge dominating sets found and their ~ L, R 

Theorem 5.8 "l(Qrn) = 10 and "l(Q31 ) = 16. 

Proof. From Theorem 5.7 "l(Q19) > 9 and "l(Q31 ) > 15. From Chapters 3 and 4 

we have "1(Q1s) = 9 and "1(Q30) = 15. Thus adding a queen to these sets we obtain 

dominating sets for Q19 and Q3i, which proves the theorem. D 

For both n = 3 and n = 11 we have j = n, i.e. no queens on the edge of the board. 

We suspect this is true for all cases where"!( Q4k+3) = 2k + 1, because a queen on 

the edge dominates fewer squares than one closer to the centre. We therefore state the 

following conjecture: 

Conjecture 1: If "!(Q4k+3) = 2k + 1, then the edge is empty. 

We will restrict our search to dominating sets with no queens on the edge and each 

edge square dominated once. We define an edge dominating set as a set of queens that 

dominates each edge square exactly once (not necessarily dominating the rest of the 

board). Note that an edge dominating set on Q4k+3 has 2k + 1 queens and that none of 
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1 3 2 1 3 2 1 1 3 2 1 3 2 1 
2 3 
3 2 
1 • • • • 1 
2 3 
3 2 
1 • • • • 1 

1 • • • • 1 
2 3 
3 2 
1 • • • • 1 
2 3 
3 2 
1 2 3 1 2 3 1 1 2 3 1 2 3 1 

Figure 5.5 Colouring of the edge squares 

these queens can be on the edge, since such a queen will cause several edge squares to 

be dominated more than once. 

We searched for edge dominating sets by computer and found several such sets. (See 

Table 5.2). However, we did not find any such sets when the number of queens is a 

multiple of three, which leads to our next conjecture: 

Conjecture 2: There are no edge dominating sets if 2k + 1 (the number of queens) is 

a multiple of three. 

If the above two conjectures are true then the lower bound for 1'(Q4k+3) can be im­

proved for the cases where 2k + 1 is a multiple of 3. We now prove why there cannot 

be edge dominating sets for some of the cases. 
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Theorem 5.9 Consider a set of 2k + 1 queens on Q4k+3 with 2k + 1 a multiple of 

three. Then if 2k + 1 is not a multiple of nine, the set cannot be edge dominating. 

Proof. Colour the edge squares with 1, 2 and 3 repeatedly so that every third square is 

the same colour, starting with 1 in a comer (see Figure 5.5). Edge squares on the same 

diagonal, row or column are either both coloured 1 or coloured differently, namely 2 

and 3. From Figure 5.5 we see that a queen can dominate two possible combinations of 

colours on the edge: Firstly, queens with both coordinates a multiple of three (indicated 

by dots in the figure) dominate only edge squares of colour 1 (eight squares in total). 

Secondly, queens on all other squares dominate two squares of colour 1, three of colour 

2 and three of colour 3. There are 8(2k+l)/3 edge squares of each colour. To dominate 

the right number of colours 2 and 3 there must be 8(2k + 1)/9 queens of the second 

type. This is only possible if 2k + 1 is a multiple of 9. 0 

Corollary 5.10 If Q4 k+3 has an edge dominating set and 2k + 1 is a multiple of 

nine, then there are exactly ( 2k + 1) /9 queens on squares with both their coordinates 

a multiple of three. D 

We can now give an alternative proof to the one by Weakley [17] for 'Y(Q7 ) = 4: 

Theorem 5.11 'Y(Q7) = 4. 

Proof. Placements establishing 'Y( Q7 ) :::; 4 can be found in Appendix A By Theo­

rem 2.1 it thus suffices to show 'Y( Q7 ) # 3. Suppose that there exists a dominating set 

R of 3 queens on Q7 . The only odd value of j satisfying the inequality in the statement 

of Theorem 2.2 is j = 7. Thus R must be an edge dominating set, but by Theorem 5.9 

such a set does not exist, so we have shown 'Y( Q1) # 3. 0 

To study the distribution of queens in (edge) dominating sets we define the following: 

The radius R of a queen is j if the queen lies on the edge of a j x j sub-board with 
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the centre square on (0, 0). Note that the radius of a queen with coordinates (i, j) 

equals the maximum of Iii and u1. On the simplified board we will refer to ~R, so 

that we can use the coordinates of the simplified board directly. For a set of queens 

we can determine the sum of all the radii. We will denote this sum by LR. Again, 

we will refer to ! LR on the simplified board. We determined ! LR for all the edge 

dominating sets of Q4k+3 we found with queens in every second row and column (from 

k = 8 only symmetric sets) and found for all of them (up to k = 11) that: 

~ '°"' R = 4k(k + 1). 
26 3 

We now state the following conjecture: 

Conjectnre 3: For an edge dominating set of Q4k+3 with queens on every second row 

and column we have (on the simplified board): 

~ '°"' R = 4k(k + 1). 
26 3 

Note that ifthe above conjecture is true it would also explain why for every third k 

there is no edge dominating set, because L R must be an integer. 

We now look at edge dominating sets that also dominate the whole board, and if we 

assume Conjectures I and 2 are true, we can determine for which kit might be possible 

to find sets that satisfy 1(Q4k+3 ) = 2k + 1. Henceforth, when we refer to a dominating 

set D of Q4k+3 we assume that, unless stated otherwise, IDI = 2k + 1 and that there is 

one queen on each even row and each even column. An (i, i)- or (i, i + 2)-dominating 

set D on Q 4k+3 is the same as a dominating set on Q 4k+ 1 with an extra edge that is also 

dominated. We can therefore use the results in Chapter 4. The following two theorems 

were first proved in [3] : 
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s=O s=1 s=2k-i+l 

(i-k-1,k+ 1) 

Figure 5.6 There are no (i, i + 2)-dominating sets on Q4k+3 . 

Theorem 5.12 There are no (i, i + 2)-dominating sets on Q4k+3· 

Proof. If Dis an (i, i + 2)-dominating set, then by Theorem 4.2 there are queens on 

d = 0, ±1, ±2, ... '±i, ±(i + 1), ±(i + 3), ±(i + 5), ... '±(2k - i -1), 

s = 0, ±1, ±2, ... , ±(i - 1), ±(i + 1), ±(i + 3), ... '±(2k - i - 3) 

with no queens on any other d-diagonal. There are no queens on at least one of s = i 

and s = -i. Without loss of generality say s = i is empty. Thus the squares on s = i 

on the edge must be dominated by a queen on a d-diagonal. This diagonal must be 

d = 2k - i + 1 (see Figure 5.6). But there is no queen on d = 2k - i + 1. Therefore 

the edge is not dominated. D 
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Theorem 5.13 An (i, i)-dominating set on Q4k+3 must have exactly one queen on 

each of 

s(d) = 0,±1, ±2, ... , ±(i- 1), ±(i + 1), ... , ±(2k - i- 1), ±(2k - i + 1), (5.1) 

with no queens on any other diagonal. 

Proof. By Theorem 4.2 there must be queens on each of 

s(d) = 0, ±1, ±2, ... , ±(i - 1), ±(i + 1), ... , ±(2k - i - 1). (5.2) 

It is easy to verify that the only squares on the border that are not dominated by (5.2), 

are the squares on s, d = ±i. As in the proof of Theorem 5.12 these squares must be 

dominated by queens on s, d = ±(2k-i+l). Thus there must be queens on the 2k + 1 

diagonals listed in (5.1). Hence there are no queens on any of the other diagonals. D 

Note that for a dominating set D on Q4k+3 both the core and the body are restricted, 

and that the number of body diagonals is two more than in the case ofQ4k+1, namely 

2k - i + 2. Most of the lemmas and theorems in Chapter 4 can be adapted for domi­

nating sets on Q4k+3· Also, the same techniques can be used to search for dominating 

sets satisfying 1(Q4k+3) = 2k + 1. However, no new sets could be found. We now 

investigate further why there are so few of these sets. 

Let c; be the number of squares on the simplified board dominated diagonally (i.e. 

all the odd-odd squares on the normal board) by the queen on ( x;, y; ), and ~ R; the 

radius of the queen on ( x;, y;). 

Lemma 5.14 c; = 4(k + 1) - 2(~R;). 

Proof. It is easy to see that queens with the same radius dominate the same number 

of squares. The centre square dominates 4(k + 1) queens and if the radius increase by 

one, the number of squares dominated decreases by two. D 
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Lemma 5.15 If D is a dominating set on Q 4k+3, then 

LC;= 4(k + l)(k + i) - 2i(i - 1). 

Proof. By Theorem 5.13 there is one queen on each of the following diagonals: 

s/d = ±0, 1,2,. . .,i-1,i+ 1,. . .,2k-i+ 1 

Diagonals= l(d = l) consists of2k + 2 - Ill squares on the simplified board. Thus 

we can determine the total number of squares covered by the diagonals (squares that 

are covered twice are counted twice): 

'LC;, = 2[(2k + 2i + 2[(2k + 1i + (2k) + .. . 

+(2k + 3 - i) + (2k + 1 - i) + ... + (1 + i)]] 

2[2k + 2 + 2[(i -1)(4k + 4 - i)/2 + (2k + 2)(k - 1+1)/2]] 

- 2[(2k + 2) + (4k + 4 - i)(i - 1) + (2k + 2)(k - i + 1)] 

4(k + l)(k + i) - 2i(i - 1). 

Theorem 5.16 If Dis an (i, i)-dominatingset on Q4k+3 , then 

1 2 °LR= 2(k + l)(k + 1-i) +i(i-1). 

Proof. By Lemma 5.14, ~R; = 2(k + 1) - ~e;,. Thus we have 

2
1 '"'R (k ) 1'"' L., /X2 +1 --2L...,Ci 

2(2k + l)(k + 1) - 2(k + l)(k + i) + i(i - 1) 

- 2(k + l)(k + 1 - i) + i(i - 1). 

D 

D 

lfwe assume Conjectures 1 and 3 are true, we have calculated~ I: R for a dominating 
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set D for Q4k+3 in two different ways. We thus have: 

4
k(k3+ l) = 2(k + l)(k + 1- i) + i(i - 1). (5.3) 

The first few integer solutions (k 2: 0) for this equation are listed in Table 5 .3. 

I k I i 

0 1or2 
2 2 or 5 
9 5 or 16 
35 16 or 57 
132 57 or 210 

Tuble 5.3: Integer solutions for equation (5.3) 

The smaller value of i is in each case the valid one. The first two solutions correspond 

with Q3 and Qu, for which dominating sets of cardinality 2k + 1 are known. No (5,5)­

dominating set D could be found fork = 9. We note, however, that for both known 

dominating sets, k is even. 
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Upper bounds for the domina-

tion number of Qn 

In this chapter we give an upper bound for 1( Qn) by constructing dominating sets for 

certain values of n. 

As stated in the proof of Theorem 2.1, it is obvious that1(Qn) is bounded above by 

n-2. As in the case of the lower bounds, no non-trivial upper bounds were known until 

quite recently. It was proved in [4] that ifn = lOSm-37, then 1(Qn) :::; 62m- 23 = 

;!n-:~. Withthelowerbound1(Qn) ::'.: ln+O(l), thisleavesagapof {7 n+O(l) 

between the lower and upper bound. We are now able to narrow this gap by more than 

half to 3~ by showing that ifn = 60m - 11, then 1(Qn) :S 32m - 6 = :5 n - 1
2
5 . 

Note that there are restrictions on n, but the set of admissible values for n is an 

arithmetic progression. For all other values of n, we can create a dominating set by 

adding queens to a dominating set on a largest admissible board of size less than n. 

At most one queen is needed for each new row and column. Therefore, the number of 

added queens is never more than a constant. This will show that 1( Qn) :::; 1~ n + 0(1 ). 

Note that the pattern formed by the queens to obtain tl1is bound is different from the 

so-called Z-pattern used in [4] and [12]. 
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We begin with the foll wing result which is easily seen to be true (refer to Figure 4.3) 

and which is therefore stated without proof. 

Lemma 6.1 If an s-diagonal s = l 2': 0 intersects a row y = p or a column x = q, 

then any s-diagonal s = l' with 0 :::; l' :::; l intersects all rows y = p' with p' 2': p and 

al/columns x = q'with q' 2': q. Asymmetricstatementholdsfornegative s-diagonals 

and similar results are true for d-diagonals. 

Theorem 6.2 For each positive integer m, l'(Q60m-n):::; 32m - 6. 

Proof. We will give a set of queens on Q4k+1 with at least one queen in every second 

row and column and at least one queen on each of the diagonals 

s(d) = 0, ±1, ±2, ... , ±(i - 1),±(i + 1), ... , ±(2k - i - 1), 

with i = 6m -1, k = 15m- 3 and many positive integer. According to Theorem 4.2 

this will be a dominating set. 

The dominating set consists mainly of five groups of queens plus a few more to 

cover the remaining empty rows, columns and diagonals. See Figures 6.1 and 6.2 for 

the cases m = 2 and m = 3. 

Again, we use the simplified version of the board. The core queens are the odd 

queens and their coordinates are given by 

' 
(1,i-3) + j(l,-3) and (-1,-i +3) + j(-1,3) for j ~ 0,1, ... ,3m- 2. 

These queens are on the diagonals 

s(d) = -i + 2, -i + 4, ... , -1, 1, 3, ... , i - 2, (6.1) 

which cover all the required consecutive odd diagonals. 

The body consists of four groups of queens, two of which are exact copies of the 

core. Ifwe regard (0,0) as the centre of the core queens, then the centres of the exact 
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Figure 6.1 m = 2 (1 (Q109) ~ 58) 
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Figure 6.2 m = 3 (/(Q169) ~ 90) 
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copies are at (2i, i) and (-2i, -i). First, consider the copy with centre (2i, i). Because 

it is a copy of the core, it will also cover consecutive diagonals (of the same parity). 

We can therefore determine the s- and d-diagonals of the copy by adding i + 2i and 

i - 2i to (6.1) respectively. This gives: 

s 

d 

2i + 2,2i +4,. .. ,3i- l,3i + l,3i +3,. .. ,4i- 2 

-2i + 2, -2i + 4,. .. , -i - 1, -i + 1, -i + 3,. .. , -2. 

Similarly, the copy with centre (-2i, -i) has queens on the diagonals 

(6.2) 

(6.3) 

s - -4i + 2, -4i + 4,. . ., -3i - 1, -3i + 1, -3i + 3,. . ., -2i - 2 (6.4) 

d - 2, 4,. . ., i - 1, i + 1, i + 3,. . ., 2i - 2. (6.5) 

The other two groups of queens are also copies of the core with the only difference that 

if m :;:,: 2, then some of the queens do not fit on the board, and these, of course, cannot 

be part of the dominating set The centres of the groups are at (i, -2i) and (-i, 2i). 

These queens (including those that do not fit on the board) are on the even diagonals 

s - -2i + 2, 2i + 4,. .. , -2 (6.6) 

s 2,4, ... '2i - 2 (6.7) 

d -4i + 2, -4i + 4, ... , -2i - 2 (6.8) 

d 2i + 2, 2i + 4,. .. , 4i - 2. (6.9) 

We see that the diagonals listed from (6.2) to (6.9) are all the even diagonals from 

s(d) = -4i+2 = -(2k-i-l) tos(d) = 4i-2 = 2k-i- l excepts(d) = 0 and 

s(d) = ±2i. 

We have to consider the queens that do not fit on the board, because they are on the 

extensions of empty diagonals which therefore must be covered in some other way. 

These queens have y-coordinates bigger than k = 15m - 3 or smaller than -k. Their 
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coordinates are 

(-i,2i) + (l,i-3) + j(l,-3) for j = 0, 1, ... ,m- 2 

and (i,-2i) + (-1,-i +3) + j(-1,+3) for j = 0, 1, ... ,m- 2, 

which are the same as (remember i = 6m - 1) 

(-6m + 2, 18m - 6), (-6m + 3, 18m - 9), ... , (-5m, 15m) 

and (6m - 2, -18m + 6), (6m - 3, -18m + 9), ... , (5m, -15m). 

These queens are on the diagonals: 

s = ±(2i - 2), ±(2i - 4),... m - 1 terms 

and d = ±(4i- 4),±(4i- 8), ... m- 1 terms 

To summarise, the following lines (corresponding to columns, rows and diagonals) are 

empty at this stage: 

x - O,±i,±2i and x = ±(i-1),±(i- 2), ... m-1 terms 

y 

d 

s 

0, ±i, ±2i and y = ±(k - 2), ±(k - 5), ... m - 1 terms 

0, ±2i 

0,±2i 

and d = ±(4i - 4), ±(4i - 8), ... m -1 terms 

and s = ±(2i - 2), ±(2i - 4), ... m -1 terms. 

Thus we have 2m + 3 empty rows and columns each and 2m + 1 empty s- and d­

diagonals each. These lines can be covered by the following procedure: 

1. Place queens on (0,0), (i, i) and (-i, -i). This covers the columns x (rows y) = 

0, ±i, s-diagonals s = 0, ±2i and d-diagonal d = 0, leaving 2m empty rows, columns 

and d-diagonals and 2m - 2 empty s-diagonals. 

2. Place a queen on each of 2m - 1 intersections of an empty row and an empty 

d-diagonal, leaving one empty row and d-diagonal, say d = 2i. 
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3_ Place a queen on each of the 2m-2 intersections of an empty column and an empty 

s-diagonal, leaving two empty columns, one of which is x = -i + 1 = -6m + 2, say, 

and no empty s-diagonals_ 

4_ Place a queen on the intersection of the empty column x = -6m + 2 and the 

remaining empty d-diagonal d = 2i = 12m - 2, i.e. on the square with coordinates 

(-6m + 2, 6m). 

5. Place a queen on the intersection of the remaining empty row and column. 

Steps 2- 5 can be executed in a number of ways. Step 2 is always possible since even 

the shortest positive (negative, respectively) empty d-diagonal d = 4i - 4 = 24m - 8 

(d = -4i + 4 = -24m + 8, respectively) intersects all the empty rows in the upper 

(lower) half of the board. This follows from Lemma 6. 1 since d = 24m - 8 intersects 

the empty row y = 12m + 1 closest to the centre in the upper half of the board in the 

point (12m - 9, 12m + 1). A symmetric statement holds for the negatived-diagonals. 

Similarly, Step 3 is always possible by Lemma 6.1 since the shortest empty positive 

(negative) s-diagonal s = 12m - 4 (s = -12m + 4) intersects the empty column 

x = 5m (x = -5m) in the upper (lower) half of the board closest to the centre (if 

m '.:". 2) in the point (5m, 7m - 4) (respectively (-5m, -7m + 4)). The coordinates 

of the queens in Steps 4 and 5 depend of course on the placements in Steps 2 and 3; 

the coordinates chosen to execute Step 4 only serve to illustrate that Step 4 is possible, 

and Step 5 is trivially possible in all cases. 

We need 4m + 2 queens for this procedure. The five copies (minus the few not on 

the board) require 5(6m - 2) - 2(m - 1) queens, giving a total number of32m - 6 

queens_ D 

Remark: In some cases it is possible to improve on the above procedure, because if 

more than two empty lines cross at one point we need fewer queens to cover those 
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lines. For example, if m = 3 we can use one fewer queen by placing queens on 

(0, 0), ±(34, 0), ±(15, 17), ±(16, 14), ±(26, -34), ±(27, -37), ±(17, 40). 

The same technique with core patterns that result in more empty lines crossing at the 

same point would permit us to improve the upper bound even more. 
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Chapter 7 

Domination on hexagonal boards 

In this chapter we detennine values for 'Y and i for hexagonal boards, and show that 

there are only two types of dominating sets for certain boards. We consider a hexagonal 

board (hive) consisting of hexagonal cells (see Figure 7.1). Note that domination by 

queens on a square beehive was studied by Theron and Geldenhuys in [16] . 

We define a queen on the hexagonal board as a piece that moves along three lines, 

namely along the cells in the same row, up diagonal or down diagonal. A queen dom­

inates a cell if the cell is in the same line as the queen. The problem is to detennine 

the minimum number of queens necessary to dominate all the cells on the board. The 

edge consists of all the cells on the edge of the hive. A cell or a line is empty if there 

is no queen on the cell or line. A cell is open if it is not dominated. 

Again, this can also be considered as a graph domination problem in the following 

way: The hexagonal queens graph H,.. has the cells of a board with n rows and diago­

nals as its vertices. Two vertices are adjacent ifthe two corresponding cells are in the 

same row or diagonal. A set D of vertices (cells) is a dominating set of Hn if every 

cell of Hn is eitherin Dor adjacentto a vertex in D. Ifno two cells of a set I are adja­

cent then I is an independent set. Let 'Y(Hn) denote the mi'n.imum size of a dominating 

set of Hn, and let i(Hn) denote the minimum size of an independent dominating set of 

Q,... Note that for any n, "f(Hn) '.'::: i(Hn)· 
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Figure 7 .1 A dominating set for H 11 

We will only consider hives with a centre cell, i.e. hives with an odd number of rows 

and diagonals. Thus we will determine values for 1(Hn) and i(Hn) (n odd) and show 

that there are only two types of dominating sets for H 4k+3 · The lines are labelled as 

shown in Figure 7.2. 

Each cell has three coordinates, namely row (r), up diagonal (u) and down diagonal 

(d) which we will denote as (r, u, d). We note the following: 

Remark 7.1 For all cells we haver+ u + d = 0 

Remark 7.2 A line with a negative (positive) label intersects an edge line with a 

positive (negative) label. 

We will now describe a dominating set of queens on H 4k+3 which was first discov­

ered by Burger and Theron [15] . The placement consists of two columns with k + 1 
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Figure 7.2 Numbering of rows and diagonals 

and k queens respectively. Figure 7.1 shows the case k = 2. In general, the coordi­

nates fork 2': 0 are given below, where the second set of coordinates is undefined (and 

to be ignored) when k = 0 (see Figure 7.3). 

(2a- k,-a,k- a) fora= 0, 1, ... ,k 

and 

(2a + 1 - k, k - a, -1 - a) for a= 0, 1, ... , k - 1. 

We will refer to this placement as the Double Column Placement (DCP ). We can see 
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Figure 7.3 Double Column Placement for H 4k+3 

that each of the rows, up diagonals and down diagonals covered by a DCP has the 

labels: 

-k,-k + 1, ... ' -1,0, 1, ... ,k- l,k. 

Thus the 2k + 1 lines closest to the centre are all covered. This is sufficient to dominate 

the whole hive. Note that the queens form an independent set. Since the case k = 0 is 

trivial, we assume henceforth that k 2': 1. We state the following lemma without proof: 

Lemma 7.1 For all k :'.". 1, "f(H4k+3 ) :::; i(H4k+a) :::; 2k + 1. 

We define a ring as a six-sided convex polygon formed by the union of six lines, where 

each line consists of at least two cells. The edge is an example of a ring. The edge can 
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Figure 7.4 Biggest empty ring 

be made smaller by replacing one line of the ring with a line closer to the centre, as long 

as the ring has six sides. For any set of queens on a hive we define the Biggest Empty 

Ring (BER), ifit exists, as the ring formed by the edge lines, if they are unoccupied, or 

by replacing each of the occupied edge lines with the empty parallel line closest to the 

edge line concerned (see Figure 7.4). Let the distance a line is replaced be the number 

oflines outside that side of the BER. Let {j be the sum of all the distances each side is 

replaced. Note that {j equals the number of cells in the edge minus the number of cells 

in the BER, because if a line of the ring is replaced by a line just closer to the centre, 

the number of cells in the ring decreases by one. We now have the following lemma: 
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Lemma 7.2 For all k ;::: 1, if H4k+3 has 2k or fewer queens, then the BER exists. 

Proof. We only have to verify that the BER always has six sides. If a line of any ring is 

replaced by a line just closer to the centre, the number of cells in two lines of the ring 

decreases by one. When constructing the BER, each queen outside the BER caused 

either one or two such replacements (depending on whether the queen is at a "comer" 

or not). It is easy to see that each queen outside the BER caused the number of cells 

in any side to decrease by at most one. There are 2k + 2 cells in each edge line. Thus 

ifthere are 2k queens, each side of the BER must have at least two cells. D 

Let c be the total number of times the BER is dominated by all the queens. Thus if 

one BER cell is covered m times, it must be counted m times. Let q be the number of 

queens on the board. We then have the following l'emma: 

Lemma 7 .3 If the BER exists for a set of q queens on H4k+3, then c ~ 6q - 26. 

Proof. There are two types of queens outside the BER (see Figure 7.4): 

(1) The queens that lie on the outside of only one line of the BER. Each of them covers 

four cells of the BER. 

(2) Queens that lie on the outside of two lines of the BER. Each of them covers two 

cells of the BER. Let there be bi and b2 queens of each type respectively. It is easy to 

see that 

with equality when the queens are independent. Now: 

c 6(q - bi - b2) + 4bi + 2b2 

- 6q - 2bi - 4b2 

- 6q - 2(bi + 2b2) 
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:::; 6q-2'5. 

Again, equality holds when the queens are independent. 

Lemma 7.4 If 1(H2n+I) = n, then 

(a) the BER is the edge. 

(b) each edge cell is covered exactly once. 

D 

Proof. From Lemma 7.3 we have c:::; 6n - 2'5. Also !BERi = 6n - '5. For the BER 

to be dominated we must have c :2:: IBERI. Thus 

6n-<5::;c::; 6n-2'5 

or 

'5 :::; c + 2'5 - 6n :::; 0. 

Therefore '5 = 0. Thus the BER must be the edge. To prove (b) we note that there are 

6n edge cells and each of the n queens can cover six edge cells. Therefore each edge 

cell must be dominated exactly once. D 

The proofs of the following two results, first proved in [15], now follow easily: 

Theorem 7.5 For all k 2". 0, i(H4k+3) = 1(H4k+3) = 2k + 1. 

Proof. As noted before we need only consider the case k :2:: 1. We first show that 

1(H4k+3) :2:: 2k + 1. Consider any set of 2k queens. There are 6(2k + 1) - '5 cells 

in the BER. But by Lemma 7.3, c :::; 6(2k) - 2'5. Thus we have c :::; 6(2k) - 2'5 < 

6(2k + 1) - '5 = !BERi. Therefore the BER cannot be dominated. The result now 

follows from Lemma 7 .1. D 

Theorem 7.6 For all k :2:: 0, i(H4k+1) = 1(H4k+1) = 2k + 1. 

Proof. H4k+ 1 is H4k+3 with the edge removed. Therefore the Double Column Place­

ment also dominates H4k+J, which establishes 1(H4k+i) :::; i(H4k+i) :::; 2k + 1. To 
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show that l'(H4k+l) 2: 2k + 1, k 2: 1, we show that 2k queens cannot dominate H 4k+I · 

Suppose we have a set of2k queens dominating H4k+I· From Lemma 7.4(b) we see 

that each cell on the edge is dominated exactly once. The comer cells can only be 

dominated by a queen on a main diagonal. Consider any main diagonal. There must 

be one queen on it, and the remaining 2k - 1 queens are on the two sides. A queen in 

a specific half dominates four cells of the edge in that half and two cells of the edge 

in the other half. To dominate the same number of edge cells on the two sides, there 

must be the same number of queens in the two halves. This is a contradiction, because 

an odd number of queens remains. D 

We will now show that there are only two types of minimum dominating sets for H4k+3 

for all k 2: 1. From Lemma 7.4 we see that any dominating set of H4k+3 consisting 

of 2k + 1 queens leaves the edge empty. We use the fact that each edge cell must be 

dominated exactly once to prove the following lemmas. 

Lemma 7. 7 If H4k+3 is dominated by 2k + 1 queens, then lines with the same label 

are either all occupied or all empty. 
'.., 

Proof. Each of the edge cells is dominated exactly once. Thus if the row r = a(a > 0) 

is occupied (respectively empty), then d = 2k + 1 - a and u = 2k + 1 - a are empty 

(respectively occupied). But then u = 2k + 1 - (2k + 1 - a) = a and d = a are 

occupied (respectively empty). The arguments for the diagonals are the same. Also, 

if a < 0, the arguments are similar (see Figure 7.5). The lines with label 0 must be 

occupied, because the comer cells can only be dominated by these lines. D 

From Lemma 7 .7 we see that we do not have to distinguish between labels of rows and 

labels of diagonals. Consequently, we will only refer to the set of labels: 

L = { - 2k - 1, -2k, ... - 2, -1, 0, 1, ... , 2k, 2k + 1} 
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Figure 7.5 Lines with the same label are all occupied (empty) 

This set can be partitioned into two disjoint sets: the set representing all the occupied 

lines (0) and the set representing all the empty lines (E). 

Lemma 7.8 If a E 0, then 

-a + 2k + 1 E E if a > 0 

-a - 2k - 1 EE if a< 0. 

Proof. The edge lines are labelled 2k + 1 or -2k - 1. Suppose a E 0. Then since 

each edge cell is dominated exactly once, it follows from Remarks 7.1 and 7.2 that 

-a+ 2k + 1 E E if a > O and -a - 2k - 1 E E if a < 0. D 

Lemma 7.9 If a, b E E and la+ bl < 2k + 1, then 

(a) -a - b E 0 

(b) a+b+2k+lEEifa+b<O 

(c) a+ b - 2k - 1 EE if a+ b > 0. 
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Proof. If lines a and bare empty and they intersect inside the edge, the third line going 

through the intersection must be occupied. From Remark 7.1 this line must be -a- b. 

Statements (b) and (c) follow from (a) and Lemma 7.8. o 

Lemma 7.10 If 2a E E, then -a E 0. 

Proof. Suppose 2a E E and -a E E. Then from Lemma 7.9(a), -2a +a= -a E 0. 

This is a contradiction. Therefore -a E 0. 0 

Lemma 7.11 If 1 EE, then all odd elements of Lare in E. 

Proof. If 1 E E, then from Lemma 7.9(c), 1 + 1 - 2k - 1 = 1 - 2k E E. If 

1,1- 2k EE, then from Lemma 7.9(b), 1+1- 2k+ 2k + 1=3 EE. Ifl,3 EE, 

then from Lemma 7.9(c), 1+3 - 2k - 1 = 3 - 2k EE. .Continuing in this way, we 

find the following elements in E: 

1 - 2k, 3, 3 - 2k, 5, 5 - 2k, ... , 2k - 3, -3, 2k - 1, -1. 

These are all the odd elements of L. 0 

Theorem 7 .12 There are only two types of dominating sets of cardinality 2k + 1 for 

H4k+3, k 2: 1: 

(a) 0 = {-2k, -2k + 2, ... , -2, 0, 2, ... , 2k - 2, 2k} 

(b) 0={-k,-k+l, ... ,-l,O,l, ... ,k-1,k} 

Proof. Either 1 EE or 1 E 0. If 1 EE, then from Lemma 7.11 we have (a). We must 

show that (a) is dominating. A cell can only be open if three empty lines intersect in 

that cell. All empty lines have odd labels. Thus the sum of the coordinates of such a 

cell would be odd. This is impossible because the sum must be 0. 

If 1 E 0, then by Lemma 7.8 we have 2k EE. It follows from Lemma 7.10 that 

-k E 0, and then from Lemma 7.8 that -k - 1 E E. If 2k E E and -k - 1 E E, 
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k 4k +3 "( number 
1 7 3 1 
2 11 5 1 
3 15 7 5 
4 19 9 56 
5 23 11 540 
6 27 13 6996 

Tuble 7.1 Number of dominating sets found 

then it follows from Lemma 7.9(c) that -k- 2 EE. If2k EE and -k- 2 EE, then 

again from Lemma 7.9(c), -k - 3 EE. Continuing in this way, we find: 

-k - 1, -k - 2, -k - 3, .. ., -2k + 1, -2k EE. 

The whole argument can be repeated with - 2k E E to get: 

k + 1, k + 2,. . ., 2k - 1, 2k EE. 

Thus (b) follows, which is also dominating as explained in the case of a DCP D 

We note that in Theorem 7.12 the labels in (a) are double the labels in (b)_ Thus if we 

take the coordinates of a dominating set of type (b) and multiply it by two, we have the 

coordinates of a dominating set of type (a). The reverse can also be done. We therefore 

have a one-to-one correspondence between all the dominating sets of type (a) and (b). 

Figure 7.6 shows a few examples. 

We can construct minimum dominating sets using the dominating sets of smaller 

boards. In Figure 7. 7 a dominating set of H 43 is obtained by repeating the pattern of a 

dominating set of H 15 . Note that only the central section of the board is shown. 

Table 7.1 lists the number of dominating sets found by computer. We see that the 

number of dominating sets is large for large boards. Dominating sets for H 4k+l are 

even more numerous, and they are not restricted to two types of minimum dominating 
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Figure 7.6 Dominating sets of different types for H15 
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Figure 7. 7 The central section of H43 
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Figure 7.8 Relation between hexagonal boards and chessboards 

sets. 

In Figure 7.8 we see that the hexagonal domination problem is the same as the queen 

dominating problem for chessboards with the queens' domination restricted to three 

lines (row, column and one diagonal) and with two comers of the board cut off. We 

hope the dominating sets for hexagonal boards can help us to answer some questions 

for chessboards. 
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Irredundance 

In this chapter we determine the irredundance number for H 5 , H7 , Q5 and Q6 . We 

repeat some of the definitions of Chapter 1 here for convenience. The closed neigh­

bourhood N[v] of the vertex v in a graph consists ofv and the set of vertices adjacentto 

v. Wedefinetheprivateneighbourhood ofv E Saspn[v,S] = N[v]-N[S-{v}]. If 

pn[v, SJ # ©for some vertex v, then every vertex in pn[v, SJ is called a private neigh­

bour of v. Note that a vertex can be its own private neighbour. We say that a set S 

of vertices is irredundant if for every vertex v E S, v has at least one private neigh­

bour. Note that a minimal dominating set is also irredundant. An irredundant set S is 

maximal irredundant if for every vertex u E V - S, the set S U { u} is not irredun­

dant, which means that there exists at least one vertex w E S U { u} which does not 

have a private neighbour. The minimum cardinality of a maximal irredundant set in a 

graph G is called the irredundance number and is denoted by fr( G). If a vertex u is 

added to a set Sand it destroys all the private neighbours of some vertex w in S (i.e. 

pn[w,S] # 0 andpn[w,SU {u}] =©),we call u apn-destroyer. Ifu is added toa 

set Sand it has no private neighbours we say u is pn-less. For a subset S of vertices 

in a graph, we say a vertex v (or a cell or a square in the case of hexagonal boards or 

chessboards) is open ifit is not dominated by S. 

It is well-known that ir ~ 'Y ~ i. Up to now no cases of hexagonal or chessboards 
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are known for which ir < /. Before we look at hexagonal boards and chessboards 

separately, we give the following lemmas: 

Lemma 8.1 If Sis a maximal irredundant set in G = (V, E), then all open vertices 

in G must be pn-destroyers. 

Proof. Because Sis maximal irredundant any vertex v E V - S must be a pn-destroyer 

or pn-less. But an open vertex cannot be pn-less because it is its own pn. Thus open 

vertices must be pn-destroyers. D 

Lemma 8.2 If Sis a maximalirredundant set in a graph G and [Sf < i( G), then S 

is not independent. 

Proof. Suppose Sis independent. Then it will be possible to add another independent 

vertex v. Thus SU { v} is irredundant because each vertex in SU { v} is its own private 

neighbour, meaning S is not maximal irredundant. D 

Lemma 8.3 If Sis a maximal irredundant set on a hexagonal board (chessboard) B 

such that [Sf = 7(B) - 1, then there are at least three open cells (squares). 

Proof. If there are only two open cells (squares), a queen i;;an be added to cover these 

two cells (squares). This will be a minimal dominating set, which is also irredundant, 

meaning Sis not maximal. D 

8.1 Irredundance on hexagonal boards 

Lemma 8.4 If ir (H5 ) = 2, then: 

(a) The number ofpn-less cells is at most/our. 

(b) Each queen has at least two private neighbours. 

(c) Each queen's private neighbours can be destroyedjivm at most six cells. 
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Figure 8.1 If ir(H5 ) = 2 then there are at most four pn-less cells. 

Proof. (a) The pn-less cells are the unoccupied cells not in line with the open cells. 

There are at least three open cells (Lemma 8-3). Even if there are only two open cells, 

it is easy to see that there are at most six squares not in line with them (see Figure 8.1 ). 

This leaves at most four pn-less cells, because the two queens are also not in line with 

the open cells. 

(b) The two queens are adjacent (Lemma 8.2). Each queen has at least two possible 

cells per line that can be private neighbours. But the adjacent queen destroys at most 

one private neighbour per line. Thus there must be at least two private neighbours. 

( c) Suppose there are only two private neighbours. If they are in the same line, they 

can be destroyed from at most four cells in that line, and from at most two cells not 

on that line. If the private neighbours are not on the same line, the cells which are 

pn-destroyers are those cells that lie on the intersections of the lines that intersect the 

two private neighbours. There are at most six such positions (see Figure 8.2). D 
I•' 

Theorem 8.5 ir(H5 ) = 3. 

Proof. We know that i'r (H5 ) ~ "Y (H5 ) = 3. Suppose ir (H5 ) < 3. It is easy to see 

that ir (H5 ) > 1, so consider an irredundant set of H 5 consisting of two queens. There 
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Figure 8.2 If ir(H5 ) = 2, then there are at most six pn-destroyers 

are 17 unoccupied cells. All of them must be either pn-destroyers or pn-less. This is 

impossible, because each queen's private neighbours can be destroyed from at most 6 

cells, and the number of no-pns is at most 4, i.e. the total numb.er of pu-destroyers or 

pn-less cells is 6 + 6 + 4 < 17. D 

Lemma 8.6 If ir ( H1) = 2, then: 

(a) There are at least eight open cells. 

(b) Each queen has at least four private neighbours. 

(c) There are no pn-destroyers. 

Proof. (a) The two queens are adjacent (Lemma 8.2). Therefore if the BER is the 

edge, there are at least eight open cells in the BER If the BER is not the edge, there 

are even more open cells in the BER (see Lemma 7.3). 

(b) Because the queens are adjacent, both queens have two lines that can have private 

neighbours. It is easy to see that each line has at least two private neighbours. 

(c) The private neighbours lie on two lines (at least two on each line). No cell on one 

of these lines is a pn-destroyer, because then it cannot destroy more than one private 

neighbour on the other line. A queen not on one of these lines can destroy at most two 

private neighbours on each line. Thus there must be a queen with only four private 
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Figure 8.3 If ir ( H 7) = 2, there are no pn-destroyers 

neighbours, and such a queen can only be in a comer (see Figure 8.3). It is now easy 

to see that there are also no pn-destroyers. D 

Theorem 8.7 ir(H1 ) = 3. 

Proof. We know ir :::; I = 3. Suppose ir(H1 ) = 2 and consider an irredundant set of 

H 1 with two queens. By Lemma 8.6 there are no pn-destroyers and there are at least 

eight open cells. But all open cells must be pn-destroyers (Lemma 8.1 ), which is a 

contradiction. Thus the theorem follows. D 

8.2 Irredundance in the queens graph 

The values for ir( Qn) for n = 1, 2, 3 and 4 are easy to determine by inspection. We 

now determine ir (Q5 ). 
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Figure 8.4 Ifir (Q5 ) = 2, there are at least seven pn-less squares 

Lemma 8.8 If ir ( Q5 ) = 2, then : 

(a) The number of pn-less squares is at most seven. 

(b) Each queen has at least two private neighbours. 

(c) Each queen's private neighbours can be destroyedjivm at most seven cells. 

Proof. (a) Consider an irredundant set of two queens on Q5 . Again, the pn-less squares 

are the unoccupied squares that are not in line with the open squares. There are at least 

three open squares (Lemma 8.3). The minimum number of rows and columns three 

squares can cover, are four. This leaves at most 9 squares, i.e. 7 unoccupied squares 

(see Figure 8.4). 

(b) If the two queens are in the same row (column), each queen has at least two 

private neighbours in its column (row). If the two queens are on the same diagonal, 

each queen has at least two private neighbours in its row and two in its column. 

(c) If a queen has only two private neighbours, the queen must be on the edge (see 

Figure 8.5). There are then at most four pn-destroyers in line with the private neigh­

bours and at most three pn-destroyers not in line with the private neighbours. It is easy 

to see that in all other cases there are fewer pn-destroyers. D 
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Figure 8.5 If ir ( Q5 ) = 2, there are at most seven pn-destroyers 

Theorem 8.9 ir(Q5 ) = 3. 

Proof. Suppose ir (Q5 ) = 2 and consider a maximal irredundant set of Q5 consisting 

of two queens. There are 23 unoccupied squares. All of them must be either pn­

destroyers or pn-less. This is impossible, because each queen's private neighbours can 

be destroyed from at most seven cells, and the number ofno-pns is at most seven, i.e. 

the total number of pn-destroyers or pn-less cells is 7 + 7 + 7 < 23. D 

In the final two results of this thesis we determine ir ( Q6 ). 

Lemma 8.10 If ir (Q6 ) = 2, then: 

(a) The number of pn-less squares is at most 14. 

(b) Each queen has at least four private neighbours. 

(c) Each queen's private neighbours can be destroyed from at most.five cells. 

Proof. (a) Again, the pn-less squares are the unoccupied squares that are not in line 

with the open squares. There are at least three open squares (Lemma 8.3). The mini­

mum number of rows and columns three squares can cover, is four. This leaves at most 

16 squares, i.e. 14 unoccupied squares 
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Figure 8.6 If ir ( Q6 ) = 2, then each queen has at least four private neighbours 

(b) Consider any queen. There are five possible private neighbours in the row (col­

umn) of the queen. Depending on the radius of the queen, there are 5, 7 or 9 squares 

in the same diagonals as the queen which can be private neighbours. If the two queens 

are in the same row (column), it is clear (see Figure 8.6) that there must be at least 

three private neighbours per row (column) and one on any of the diagonals that inter­

sect the queen. If the queens are on the same diagonal, there must be at least three 

private neighbours per row and per column (see Figure 8.6). 

(c) Consider any queen. There are at least three private neighbours in the same row 

(column) as the queen plus at least one other private neighbour. There are at most three 

squares in the row which will destroy these private neighbours. and at most two other 

squares. D 

Theorem 8.11 ir(Q6 ) = 3. 

Proof. Suppose ir (Q6 ) = 2 and consider a maximal irredundant set of Q6 consist­

ing of two queens. There are 34 unoccupied cells. All of them must be either pn­

destroyers or pn-less. This is impossible, because each queen's private neighbours can 

be destroyed from at most five cells, and the number of pn-less squares is at most 14, 

i.e. the total number of pn-destroyers or pn-less cells is 14 + 5 + 5 < 34. D 
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Using the same method as in the proofs of the above theorems, it can be shown that 

ir ( Q7 ) = 4. However, the proof in this case is much more technical and is therefore 

omitted. 
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Appendix A 
Dominating sets 

For all sets the lower left comer square has coordinates (1, 1 ). 

n=5 
I. 11 13 43 2. 11 15 43 3. 112244 4. 11 23 32 
6. 112442 7. 11 25 43 8. 11 25 52 9. 11 33 34 

11. 11 34 43 12. 11 24 43 13. 11 45 54 14. 11 35 53 
16. 11 34 44 17. 112454 18. 12 14 33 19. 12 14 53 
21. 12 21 35 22. 12 21 44 23. 12 23 54 24. 12 33 43 
26. 12 33 52 27. 12 34 52 28. 12 35 52 29. 12 42 45 
31. 12 33 43 32. 22 23 24 33. 22 24 42 34. 22 24 43 
36. 23 32 33 37. 23 33 43 

n=6 

11 35 53 

n=7 

5. 11 23 53 
10. 11 33 55 
15. 113453 
20. 12 21 33 
25. 12 33 45 
30. 13 23 53 
35. 22 33 44 

I. 11 22 46 64 2. 11 27 43 65 3. 11 35 53 77 4. 11 25 54 64 
5. 11 35 45 74 6. 11 35 46 63 7. 12 213764 8. 12 26 41 55 
9. 312213 56 10. 13 36 41 66 11. 13 36 41 66 11. 14 44 54 64 

13. 22 33 44 66 

n = 8 (Please see next page.) 
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I. 11 12 26 51 65 2.1112465465 3. 11 13 27 52 75 

4. 11 13 37 51 75 5. II 13 37 52 75 6. 11 13 37 53 75 

7. 11 13 45 56 82 8. 1114174674 9. II 14 28 52 85 

10. 11 14 46 63 78 11. 111824 53 87 12. II 22 33 57 75 

13. 11 22 45 67 83 14. 1122 46 5774 15. II 22 46 64 88 

16. 11 23 32 46 85 17. 1123 3247 86 18. 11 23 32 48 75 

19. II 23 32 48 84 20. 11 23 32 57 75 21. II 23 34 42 67 

22. 11 23 35 42 54 23. 11 23 35 46 54 24. II 23 36 62 84 

25. 11 23 37 52 66 26. 11 23 37 62 76 27. 11 23 38 42 87 

28. 11 23 38 52 86 29. 11 23 46 53 83 30. II 23 46 54 65 

31. 112346 67 74 32. II 23 47 62 76 33. 11 23 47 63 85 

34. 112347 65 82 35. 1123 48 62 76 36. 11 23 48 63 85 

37. 11 24 33 42 67 38. 11 24 35 58 83 39. 11 24 37 53 75 

40. 11243763 76 41. 11 24 38 63 85 42. 11 24 38 63 86 

43. 11 24 38 73 85 44. 11 24 42 47 74 45. 11 24 45 56 82 

46. 112445 58 82 47. 11 24 47 52 75 48. 11 24 47 52 76 

49. 112447 52 77 50. 11244762 75 51. 1124 47 62 76 

52. 11 24 47 72 75 53. 11244772 83 54. 11 24 47 72 86 

55. 112447 73 82 56. 112448 62 86 57. 11 25 37 64 74 

58. 11 25 38 54 64 59. 112543 67 83 60. 11 25 47 64 72 

61. 11 26 34 48 83 62. 11 26 34 67 72 63. II 26 43 58 73 

64. 11 26 43 78 84 65. 1126 47 62 74 66. 11 26 48 62 84 

67. 11 26 48 64 82 68. 11 27 33 58 64 69. 11 27 38 43 84 

70. 11 27 38 73 82 71. 11 28 43 45 84 72. 11 28 44 66 82 

73. 112845 53 54 74. 11 28 45 54 82 75. 11 28 45 54 84 

76. 11 28 46 64 82 77. 11 33 44 55 77 78. 11 34 36 64 84 

79. 113446 54 65 80. 11 34 46 54 84 81. 11 34 46 57 63 

82. 11344663 76 83. 11 34 46 63 78 84. 11 34 46 63 85 

85. 113446 6773 86. 11 34 47 64 76 87. 11 34 47 73 86 

88. 11 34 48 54 84 89. 11 34 48 63 85 90. 11 34 48 63 86 

91. 11 34 48 63 87 92. 11 34 48 67 83 93. II 34 48 73 87 

94. 11 35 37 53 73 95. 11 35 37 53 74 96. 11 35 44 67 82 

97. 11 36 48 63 84 98. 11 44 45 58 82 99. 114548 54 84 

100. 12 13 48 75 81 101. 12 14 21 57 83 102. 12 14 37 61 86 

103. 12 15 48 73 81 104. 12 16 38 54 74 105. 12 18 21 55 83 

106. 12 2126 58 73 107. 12 21 33 46 85 108. 12 21 33 47 86 

109. 12 213348 75 110 12 21 33 48 84 111. 12 21 33 57 75 

112. 12 21 34 57 83 113. 12 213544 53 114. 12 213567 84 

115. 12 21 35 68 74 116. 12 213568 83 117. 1221357488 
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118. 12 213657 84 119. 12 21 36 58 74 120. 12 21 36 63 66 

121. 12 21 36 66 83 122. 12 21 37 48 83 123. 12 21 37 64 88 

124. 12 21 37 73 88 125. 12 21 38 55 64 126. 12 21 38 55 83 

127. 12 213856 74 128. 12 21 38 64 67 129. 12 21 38 66 83 

130. 12 21 45 67 83 131. 12 214568 73 132. 12 21 46 55 74 

133. 12 21 46 57 83 134. 12 21 46 58 73 135. 12 214664 88 

136. 12 214678 83 137. 12 22 26 51 65 138. 12 22 46 51 65 

139. 12 22 46 53 83 140. 12 22 48 75 81 141. 1223314467 

142. 12 23 31 56 88 143. 12 23 35 67 84 144. 12 23 38 66 81 

145. 12 23 47 65 81 146. 12 23 48 75 81 147. 12 24 31 43 55 

148. 12 24 3143 88 149. 12 24 31 65 78 150. 12 24 33 41 76 

151. 12 24 33 41 85 152. 12 24 35 43 88 153. 1224386377 

154. 12 24 415677 155.1224477581 156. 12244775 83 

157. 12 24 48 75 81 158. 12 25 31 66 84 159. 12 25 35 74 84 

160. 12 25 48 73 81 161. 12 26 315783 162. 12 26 33 51 65 

163. 12 26 33 57 63 164. 12 26 42 57 83 165. 12 26 44 51 65 

166. 12 27 33 68 74 167. 12 27 41 53 66 168. 12 27 41 68 73 

169. 12 27 44 53 65 170. 12 27 44 53 67 171. 12 27 44 61 76 

172. 12 27 46 53 83 173. 1228337187 174.1228446681 

175. 12 28 44 75 81 176.1231464781 177. 12 33 46 72 85 

178. 12 33 46 81 85 179. 12 33 4865 81 180. 12 33 48 75 81 

181. 12 34 37 62 85 182. 12 3446 53 87 183. 1234465581 

184. 12 34 47 73 86 185. 12 3448 53 87 186. 12 34 48 73 87 

187. 12 34 48 75 81 188. 12 35 42 72 88 189. 12 35 43 54 68 

190. 12 35 43 54 88 191. 12 35 44 78 81 192. 12 35 48 72 84 

193. 12 35 48 73 81 194. 12 35 48 74 81 195. 12 3643 58 74 

196. 12 36 44 64 84 197. 12 36 44 67 73 198. 1236446884 

199. 12 36 46 71 83 200. 12 36 46 73 83 201. 12 36 47 64 81 

202. 12 37 43 78 84 203. 12 37 44 61 76 204. 12 37 44 61 85 

205. 12 37 44 62 85 206. 12 38 43 44 84 207. 12 38 44 51 85 

208. 12 38 44 65 84 209. 12 38 44 75 81 210. 12 38 45 71 84 

211. 12 42 46 47 81 212. 12 43 44 48 81 213. 12 43 46 78 81 

214. 12 44 47 78 81 215. 12 44 48 75 81 216. 12 46 47 53 81 

217.1246475383 218. 12 46 47 73 81 219. 13 16 41 64 78 

220. 13 21 25 64 78 221. 13 21 27 58 64 222. 13 21 34 57 82 

223. 13 214668 74 224. 13 21 46 78 82 225. 13 22 27 52 75 

226. 13 22 314467 227. 13 22 3145 54 228. 13 22 31 45 85 

229. 13 22 314774 230.1322314787 231. 13 22 3148 65 

232. 13 22 31 48 76 233. 13 22 31 56 88 234. 13 22 315775 
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235. 13 22 315885 236. 13 22 317887 237. 13 22 34 41 76 

238. 13 22 34 41 85 239. 13 22 37 51 75 240. 13 22 37 76 81 

241.1322386581 242.1322386681 243.1322477184 

244. 1322477284 245.1322477481 246. 1322486176 

247. 13 24 47 72 88 248. 13 24 48 66 82 249. 13 25 31 64 78 

250. 13 25 317884 251. 13 25 32 66 71 252. 13 25 32 78 84 

253. 13 25 4164 78 254. 13 25 44 56 82 255. 13 25 44 58 82 

256. 13 25 47 72 84 257. 13 26 41 64 78 258. 13 26 42 64 88 

259. 13 27 315684 260. 13 27 315864 261. 13 27 33 52 75 

262. 13 27 415684 263. 13 27 415864 264. 13 27 416478 

265. 13 27 42 44 67 266. 13 27 42 56 81 267. 13 27 44 52 75 

268. 13 27 44 52 76 269. 13 27 44 62 76 270. 13 28 31 54 67 

271.1328316774 272.1328324166 273.1328414476 

274. 13 28 41 54 66 275. 13 28 44 51 76 276. 13 28 44 61 76 

277.1328446286 278.1328457284 279. 1328477284 

280. 13 313663 88 281. 13 313755 73 282. 13 3144 55 77 

283. 13 3145 62 78 284. 13 3147 56 82 285. 13 3147 58 62 

286. 13 3148 52 67 287. 13 33 37 51 75 288. 13 34 45 71 88 

289. 13 34 47 71 88 290. 13 34 48 66 81 291. 13 34 48 73 87 

292. 13 35 42 54 68 293. 13 35 44 58 81 294. 13 36 4164 77 

295.1336416478 296.1336416488 297.1336435873 

298. 13 36 45 71 82 299. 13 36 47 71 82 300. 13 37 43 78 84 

301. 13 37 44 51 75 302. 13 37 44 61 76 303. 13 38 43 66 81 

304. 13 38 44 61 85 305. 13 38 44 61 86 306. 13 38 44 71 85 

307. 13 38 44 81 85 308. 13 44 47 71 82 309. 13 45 48 71 82 

310. 14 16 32 58 72 311. 14 17 417488 312. 14 17 417783 

313. 14 18 33 52 76 314. 14 213658 72 315. 14 2146 58 73 

316. 14 21 46 63 78 317. 14 22 35 58 83 318. 14 22 46 65 71 

319. 1422476175 320. 1422485185 321. 1422486286 

322.1423324166 323.1423324177 324. 1423325781 

325. 14 23 32 66 81 326. 14 23 33 66 82 327. 14 23 35 72 84 

328. 14 23 37 61 86 329. 14 23 37 62 85 330. 14 23 37 62 86 

331. 14 23 47 61 85 332. 14 23 48 71 85 333. 14 24 42 77 83 

334. 14 25 33 58 82 335. 14 25 416783 336. 14 25 42 77 83 

337. 14 26 32 58 72 338. 14 26 32 77 81 339. 14 26 33 67 72 

340.1426417783 341.1426426882 342. 1426427783 

343.1426435871 344.1427435388 345.1428316167 

346.1428316367 347.1428325781 348.1431375863 

349. 14 313763 78 350. 14 314663 78 351. 14 3146 67 82 
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352. 14 3147 58 62 353. 14 3148 67 82 354. 14 32 36 58 72 

355. 14 32 45 53 68 356. 14 32 45 66 73 357. 14 32 46 58 72 

358. 14 33 35 58 81 359. 14 33 37 63 76 360. 14 33 46 63 76 

361. 14 33 46 65 72 362. 14 33 46 72 76 363. 14 33 46 72 87 

364. 14 33 48 72 76 365. 14 35 416782 366. 14 36 43 52 78 

367. 14 36 43 58 72 368. 14 37 41 66 73 369. 14 37 42 58 61 

370. 14 37 42 67 81 371. 14 37 44 61 76 372. 14 38 416683 

373. 14 38 43 66 81 374. 14 4144 78 87 375. 14 42 46 68 81 

376. 14 43 47 71 88 377. 15 213468 83 378. 15 22 44 58 83 

379. 15 22 47 64 71 380. 15 22 47 64 72 381. 15 23 34 67 82 

382.1523445881 383. 15 24 42 63 78 384. 15 31 34 67 82 

385. 15 32 44 67 82 386. 15 33 44 58 81 387. 15 34 43 57 82 

388. 15 34 43 67 82 389. 15 34 43 68 72 390. 15 43 44 58 81 

391. 16 213458 72 392. 16 22 44 67 84 393. 16 22 48 62 84 

394. 16 23 44 67 71 395.1624325872 396. 16 24 42 67 82 

397. 16 24 42 68 82 398. 16 32 34 58 72 399. 16 32 44 58 72 

400. 16 32 44 68 84 401. 16 33 43 78 84 402. 16 33 48 61 84 

403. 16 33 48 63 81 404.1633486481 405. 16 34 43 55 61 

406. 16 34 43 57 82 407. 16 34 43 58 72 408. 17 22 3843 84 

409. 1722 38 73 81 410. 17 22 43 58 84 411. 1722485483 

412.1722487481 413. 17 23 46 53 83 414. 17 23 48 54 81 

415. 1724347488 416.1724425683 417.1724425863 

418. 1728337481 419. 17 32 34 57 83 420. 17 32 34 73 88 

421. 1733437882 422. 17 33 43 78 84 423. 17 33 45 54 64 

424. 17 34 4243 88 425. 17 3443 57 82 426. 17 34 43 71 88 

427. 17 34 43 73 88 428. 17 3448 54 82 429. 1735445371 

430. 17 36 44 63 71 431.1743447881 432. 1821245782 

433. 18 2124 57 84 434. 18 213457 82 435. 182244 53 67 

436. 18 22 44 67 84 437. 18 22 46 62 84 438. 18 22 46 64 81 

439. 18 23 4244 67 440. 18 24 32 53 67 441. 18 24 32 77 83 

442. 18 24 42 53 67 443. 18 2442 66 82 444. 18 24 42 67 73 

445. 18 24 42 67 82 446. 18 24 42 77 83 447. 18 27 33 64 74 

448. 18 32 34 44 84 449. 18 32 34 56 74 450. 18 34 43 44 84 

451. 18 34 43 53 55 452.1834435388 453. 18 34 43 66 81 

454. 18 34 44 53 87 455. 18 34 44 54 84 456. 18 34 44 65 84 

457. 18 34 44 73 87 458. 18 34 44 75 81 459. 18 34 44 76 84 

460.1834448487 461. 18 42 43 44 67 462. 18 43 44 58 64 

463. 2124 26 58 72 464. 212427 56 84 465. 21 24 27 58 84 

466. 21 34 45 57 82 467. 21 34 45 57 84 468. 21 34 45 67 83 
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469. 22 23 26 54 65 470. 22 24 27 43 76 471. 22 24 37 63 76 

472. 22 24 38 63 77 473. 22 24 47 63 76 474. 22 24 47 72 86 

475. 22 24 48 62 86 476. 22 26 34 57 63 477. 22 26 38 63 84 

478. 22 26 43 58 84 479. 22 26 43 68 84 480. 22 26 43 78 84 

481. 22 26 44 68 84 482. 22 26 48 54 63 483. 22 26 48 62 84 

484. 22 26 48 63 84 485. 22 26 48 64 84 486. 22 27 33 68 74 

487. 22 33 44 66 88 488. 22 33 44 68 86 489. 22 34 45 53 65 

490. 22 34 45 53 67 491. 22 34 45 53 77 492. 22 34 45 53 78 

493. 22 34 45 53 86 494. 22 34 48 53 85 495. 22 34 48 53 87 

496. 22 34 48 73 87 497. 22 36 37 63 73 498. 22 44 48 56 83 

499. 22 44 48 66 84 500. 23 25 48 71 84 501. 23 27 42 44 67 

502. 23 3148 52 67 503. 23 33 36 62 84 504. 23 33 47 72 86 

505. 23 34 45 52 77 506. 23 34 45 67 81 507. 23 3447 65 81 

508. 23 34 48 71 85 509. 23 35 42 54 66 510. 23 35 43 54 88 

Sil. 23 35 43 73 88 512. 23 35 44 56 81 513. 23 364244 67 

514. 23 36 42 77 83 515. 23 36 44 52 65 516. 23 37 43 73 88 

517. 23 38 42 51 67 518. 23 38 44 52 85 519. 2342464781 

520. 23 44 48 56 81 521. 23 44 48 62 86 522. 24 26 34 74 88 

523. 24 26 42 62 88 524. 24 26 42 63 88 525. 24 26 42 64 88 

526. 24 27 33 52 75 527. 24 27 41 56 84 528. 24 27 42 55 72 

529. 24 28 31 61 67 530. 24 28 34 63 77 531. 24 28 42 66 82 

532. 24 28 44 62 86 533. 24 33 38 62 85 534. 24 33 45 52 77 

535. 24 33 45 62 76 536. 24 33 46 67 72 537. 24 33 47 72 76 

538. 24 33 47 72 86 539. 24 33 48 62 86 540. 24 34 35 74 88 

541. 24 3444 54 84 542. 24 34 44 63 85 543. 24 34 44 72 76 

544. 24 34 44 72 85 545. 24 34 44 74 88 546. 24 34 44 78 83 

547. 24 34 44 78 85 548. 24 34 45 71 88 549. 24 34 47 73 88 

550. 24 34 48 71 85 551. 24 35 42 61 78 552. 24 35 43 67 81 

553. 24 35 44 72 76 554. 24 36 42 63 77 555. 24 36 42 77 83 

556. 24 36 43 52 77 557. 24 36 43 77 82 558. 24 36 44 65 72 

559. 24 36 44 67 72 560. 24 36 44 72 76 561. 24 36 44 72 85 

562. 24 36 44 72 87 563. 24 36 45 71 82 564. 24 36 47 71 82 

565. 24 37 42 56 81 566. 24 37 42 58 61 567. 24 37 44 72 76 

568. 24 38 42 51 67 569. 24 38 42 77 83 570. 24 38 43 77 82 

571. 24 38 44 62 85 572. 24 38 44 62 86 573. 24 38 44 65 82 

574. 24 38 44 66 82 575. 24 38 44 72 76 576. 24 38 44 72 85 

577. 24 38 44 72 87 578. 24 44 47 72 86 579. 24 44 48 62 86 

580. 25 33 44 58 82 581. 25 33 44 67 81 582. 25 33 44 78 84 

583. 25 33 47 64 72 584. 25 34 43 67 81 585. 25 34 43 68 71 
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586. 25 34 44 46 81 587. 25 34 44 58 83 588. 25 34 46 71 81 

589. 25 34 48 71 83 590. 26 33 34 48 83 591. 26 33 43 78 84 

592. 26 33 44 67 72 593. 26 33 45 54 62 594. 26 33 45 54 64 

595. 26 33 48 62 84 596. 26 33 48 64 82 597. 26 34 43 55 63 

598. 26 34 43 57 81 599. 26 34 43 58 71 600. 27 33 42 44 67 

601. 27 33 43 78 84 602. 27 35 44 53 72 603. 28 33 34 63 77 

604. 28 33 34 74 84 605. 28 33 43 78 84 606. 28 33 44 66 82 

607. 28 33 46 64 82 608. 28 34 43 55 82 609. 28 34 48 71 83 

610. 28 43 44 45 53 611. 3134 37 58 61 612. 31 34 37 58 63 

613. 313437 63 78 614. 31 34 37 67 81 615. 313437 68 74 

616. 3134486773 617. 31 34 48 67 82 618. 32 34 37 57 81 

619. 33 34 35 46 54 620. 33 34 35 58 81 621. 33 34 37 63 76 

622. 33 34 44 78 87 623. 33 34 47 71 88 624. 33 34 48 67 81 

625. 33 34 48 73 87 626. 34 35 43 54 88 627. 34 35 44 78 81 

628. 34 35 48 72 81 629. 34 37 43 73 88 630. 34 42 46 47 81 

631. 3442466781 632. 34 43 48 77 84 633. 34 44 46 54 65 

634. 34 44 46 54 85 635. 34 44 46 55 81 636. 34 44 48 54 83 

637. 34 44 48 73 87 638. 38 44 45 54 83 

n=9 

1. 11 23 37 62 76 
5. 11 35 59 73 97 
9. 13 28 44 62 86 

2. 11 24 38 63 86 
6. 11 45 59 84 98 

10. 13 38 44 61 86 

3. 112448 62 86 
7. 12 29 55 81 98 

11. 13 38 55 61 86 
13. 13 46 54 65 79 
17. 22 36 48 67 73 
21. 34 47 55 63 76 

n= 10 

13 39 55 71 97 

n= 11 

14. 14 23 32 41 77 15. 14 49 55 61 96 
18. 22 44 55 66 88 19. 23 38 55 72 87 

(2,4) (4,10) (6,6) (8,2) (10,8) 
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4. 11 3 5 58 83 97 
8. 13 22 31 58 85 

12. 13 39 55 71 97 
16. 22 34 48 73 87 
20. 24 48 55 62 86 
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Programmes 

Programme 1 

program domination; 

assimmetric } 

{ n=49 (4, 6)-dom sets; 

Uses CRT,Printer; 

var 

dominating 

ml, m2, m3 ,m4 

ql,q2,q3,q4,q5,q6,q7,q8,q9,ql0,qll, 

q12,q13,q14,ql5,ql6,ql7,ql8,ql9,q20,q21 

cc,m,n,c,k,t,i,a,Qx,Qy,s,d,urv,w, 

boolean; 

integer; 

integer; 

diag,sdiag 

QueenX,QueenY 

soekX,soekY 

: integer; 

array[l. .25) of integer; 

: array[-

12 .. 12) of integer; 

SoekD 

openx,openy,openD 

ray[l .. 4) of integer; 

OnDiag 

ray[l .. 4,1 .. 4) of integer; 

f 
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array[l .. 22) of integer; 

ar-

ar-

text; 



Function QueenOK(a,s,Qx 

Begin 

QueenOK := true; 

Qy := s-Qx; 

if a=l then 

begin 

QueenX[l] := Qx; 

QueenY[l] := Qy; 

exit; 

end; 

for c := 1 to a-1 do 

if (Qx = QueenX[c]) 

or (Qy QueenY[c]) 

Appendix B 

integer) boolean; 

or ((Qy-Qx) = (QueenY[c]-QueenX[c])) then 

begin 

QueenOK := false; 

exit; 

end; 

QueenX[a] := Qx; 

QueenY[a] .- Qy; 

End; 

Procedure DetermineOpenLines; 

Begin 
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for c := -k to k do 

begin 

SoekX[c] 

SoekY[c] 

end; 

: 

: 

= O; 

= O; 

for c := 1 to 2*k-3 do 

begin 

SoekX[queenX[c]] 

SoekY[queenY[c]] 

end; 

: = 

: = 

t : = 1; 

for c := -k to k do 

if (SoekX[c]=O) then 

begin 

OpenX [t] := c; 

t := t+l; 

end; 

t : = 1; 

for c := -k to k do 

if (SoekY[c]=O) then 

begin 

OpenY[t] := c; 

t := t+l; 

end; 

1; 

1; 

for c := 1 to 2*k-i do SoekD[c] := O; 

for c .- 1 to 2*k-i-2 do 
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begin 

diag := QueenY[c] - QueenX[c]; 

d := trunc( (diag + 2*k-i+l)/2); 

SoekD[dJ := l; 

end; 

t : = 1; 

for c := 1 to 2*k-i do 

if (SoekD[c]=O) then 

begin 

OpenD [t J : = c* 2-2* k+i-1; 

t := t+l; 

end; 

for c .- 1 to i+l do SoekD[c] := O; 

for c .- 2*k-i-l to m-4 do 

begin 

diag := QueenY[c] - QueenX[c]; 

d := trunc((diag + i+2)/2); 

SoekD[dJ := l; 

end; 

t := 3; 

for c := 1 to i+l do 

if (SoekD[c]=O) then 

begin 

OpenD[t] := c*2-i-2; 

t := t+l; 

end; 
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for u := 1 to 4 do 

for v := 1 to 4 do 

OnDiag[v,u] := O; 

for u := 1 to 4 do 

for v := 1 to 4 do 

for w := 1 to 4 do 

if OpenY[u]-OpenX[v] 

begin 

OnDiag[v,u] := w; 

{y} 

{x} 

OpenD[w] then 

sdiag := OpenY[u] + OpenX[v]; 

End; 

if abs(sdiag) <= 2*k-i-3 then 

begin 

c := 2*k-i-2 - abs(sdiag); 

if sdiag<O then c := c+l; 

if (i-abs(sdiag)) mod 2 = 0 then c := c+i-1; 

if (QueenY[c] +QueenX[c]) = (OpenY[u] +OpenX[v]) then 

if Queenx[c] > OpenX[v] then OnDiag[v,u] :=O; 

end; 

end; 

BEGIN 

{Assign(f,'m\49asop46.pas') ;} 

{Rewrite(f); 

clrscr; 

cc : = O; 
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k := 12; 

i := 4; 

n := 4*k + 1; size of board 

m := 2*k + 1; no of Queens } 

writeln(n,'x' ,n,' (',i,',',i+2,')'); 

for ql := 5 to 8 do 

if QueenOK(l,17,ql) then 

for q2 := ql-2*k+i+4 to -ql do 

if QueenOK(2,-17,q2) then 

for q3 := 3 to 12 do 

if QueenOK(3,15,q3) then 

for q4 := -12 to -3 do 

if QueenOK(4,-15,q4) then 

for q5 := 1 to 12 do 

if QueenOK(5,13,q5) then 

for q6 := -12 to -1 do 

if QueenOK(6,-13,q6) then 

for q7 := -1 to 12 do 

if QueenOK(7,11,q7) then 

for q8 := -12 to 1 do 

if QueenOK(8,-ll,q8) then 

for q9 := -3 to 12 do 

if QueenOK(9,9,q9) then 

for qlO := -12 to 3 do 

{s=-17} 

{s=+15} 

{s=-15} 

{s=+13} 

{s=-13} 

{s=+ll} 

{s=-11} 

{s=9} 

{s=-9} 

if QueenOK(l0,-9,qlO) then 

for qll := -5 to 12 do {s=7} 
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if QueenOK(ll,7,qll) then 

for q12 := -12 to 5 do {s=-7} 

if QueenOK(12,-7,q12) then 

for q13 := -7 to 12 do 

if QueenOK(13,5,q13) then 

for q14 := -12 to 7 do 

if QueenOK(14,-5,q14) then 

for q15 := -8 to 11 do 

if QueenOK(15,3,q15) then 

for q16 := -11 to 8 do 

if QueenOK(16,-3,q16) then 

for q17 := -9 to 10 do 

if QueenOK(17,1,ql7) then 

for q18 := -10 to 9 do 

if QueenOK(18,-1,q18) then 

for q19 := -1 to 3 do 

if QueenOK(19,2,q19) then 

for q20 := -3 to 1 do 

if QueenOK(20,-2,q20) then 

for q21 := -2 to 2 do 

if Queen0K(21,0,q21) then 

begin 

DetermineOpenLines; 

for ml := 1 to 4 do 

if OnDiag[ml,1]>0 then 

for m2 := 1 to 4 do 
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if (OnDiag[m2,2]>0) and (m2<>ml) 

and (Ondiag[ml,l]<>OnDiag[m2,2]) then 

for m3 := 1 to 4 do 

if (OnDiag[m3,3]>0) and (m3<>ml) and (m3<>m2) 

and (Ondiag[m3,3]<>0nDiag[ml,1]) 

and (OnDiag[m3,3]<>0nDiag[m2,2]) then 

for m4 := 1 to 4 do 

if (OnDiag[m4,4]>0) and (m4<>ml) 

and (m4<>m2) and (m4<>m3) 

and (Ondiag[m4,4]<>0nDiag[ml,l]) 

and (OnDiag[m4,4]<>0nDiag[m2,2]) 

and (Ondiag[m4,4]<>0nDiag[m3,3]) 

begin 

QueenX[m-3] := OpenX [ml]; 

QueenY[m-3] := OpenY[l]; 

QueenX[m-2] .- OpenX[m2]; 

QueenY[m-2] := OpenY[2]; 

QueenX [m-1] .- OpenX [m3] ; 

QueenY [m-1] .- OpenY[3]; 

QueenX[m] := OpenX [m4]; 

QueenY[m] := OpenY[4]; 

cc := cc + 1; 

write(cc,'. I ) ; 

then 

for c .- 1 to mdo write('(' ,queenX[c],' ,' ,queenY[c],')'); 

for c := 1 tom do write(f,queenX[c] :4,queenY[c] :4); 

writeln(f); 
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end; 

end; 

close(f); 

writeln('number=' ,cc,' 

readln; 

That is all'); 
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Programme2 

Program RyeKolomme31; {generate all comb of} 

{rows for 29x29 subbord} 

Uses CRT; 

Var 

yl,y2,y3,y4,y5,y6,y7,y8,y9,yl0,yll,yl2,yl3,yl4,yl5, 

x,y,q,k,m,n,gamma,Aantopl,rand,d,qns, 

integer; c,halfver,halfsom,l,a,ax,bx 

queenY,queenX 

rypatroon 

count 

array[l .. 13] of integer; 

array[-13 .. 13] of integer; 

longint; 

f 

Function RyOK(a,bx 

Begin 

RyOK := true; 

QueenX[a] :=bx; 

if a=l then exit; 

integer) Boolean; 

for c .- -1+1 to bx do rypatroon[c] := O; 

: text; 

for c .- 1 to a do rypatroon[QueenX[c]] := 1; 

for c := 1 to a-1 do if (((QueenX[c]+bx) mod 2) 

begin 

ax:= QueenX[c]; 

halfsom .- trunc((ax+bx)/2); 

0) then 

Halfver .- trunc((bx-ax)/2); 

if (rypatroon[halfsom]=O) {Theorem 5.5) 
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and (rypatroon[halfver-1]=0) then 

begin 

end; 

RyOK .- false; 

exit; 

end; 

if a=qns then 

begin 

for c := bx+l to 1-1 do rypatroon[c] .- O; 

for c := 1 to a-1 do 

for d := c+l to a do 

if (((QueenX[c]+QueenX[d]) mod 2) = 0) then 

begin 

ax := QueenX[c]; 

bx := QueenX[d]; 

halfsom .- trunc((ax+bx)/2); 

halfver .- trunc( (bx-ax)/2); 

if (rypatroon[halfsom]=O) 

and ((rypatroon[halfver-1]=0) 

or (rypatroon[l-halfver]=O)) then 

begin 

RyOK := false; 

exit; 

end; 

if (rypatroon[-halfsom]=O) 

and ((rypatroon[halfver-1]=0) 
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or (rypatroon[l-halfver]=O)) 

and ((rypatroon[ax)=l) or (rypatroon[bx)=l)) then 

begin 

RyOK .- false; 

exit; 

end; 

End; 

BEGIN 

clrscr; 

k : = 7; 

end; 

end; 

gamma .- 2*k+l; 

count := O; 

1 := 14; 

qns := 2*1-2*k-1; 

ing subboard} 

{sub-board = 21+1} 

{number of rows with qns cross-

writeln('board: ',4*k+3); 

writeln('total nuber of queens:' ,gamma); 

writeln('sub-board:' ,2*1+1); 

wri teln ('number of rows with queens crossing subboard:' , qns) ; 

for yl := -13 to -6 do 

if RyOK(l,yl) then 

{most rows in lower half of board) 

for y2 := yl+l to -5 do 
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if RyOK(2,y2) then 

for y3 := y2+1 to -4 do 

if RyOK(3,y3) then 

for y4 := y3+1 to -3 do 

if RyOK(4,y4) then 

for y5 := y4+1 to -2 do 

if RyOK(5,y5) then 

for y6 := y5+1 to -1 do 

if RyOK(6,y6) then 

for y7 := y6+1 to O do 

if RyOK(7,y7) then 

for yB .- y7+1 to 8 do 

if RyOK(8,y8) then 

for y9 := y8+1 to 9 do 

if RyOK(9,y9) then 

for ylO := y9+1 to 10 do 

if RyOK(lO,ylO) then 

for yll := ylO+l to 11 do 

if RyOK(ll,yll) then 

begin 

for y12 := yll+l to 12 do 

if RyOK(12,y12) then 

for y13 := y12+1 to 13 do 

if RyOK(l3,y13) then 

count .- count+l; 
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write(count,'. '); 

for c := 1 to 13 do write(QueenX[c] :4); 

writeln; 

for c := -13 to 13 do write(rypatroon[c]); 

writeln; 

end; 

writeln('Number of patterns 

readln; 

END. 

' , count, ' . The End. ' ) ; 
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Programme3 

Program DominationSq31; {search edge dominating sets } 

{for 29x29 subbord (senter)} 

Uses CRT; 

Var 

xl,x2,x3,x4,x5,x6,x7,x8,x9,xl0,xll, 

yl,y2,y3,y4,y5,y6,y7,y8,y9,yl0,yll, 

by3,by2,bxl,bx0, 

d,s,a,cc,c,k,gamma,Qy,Qx,ry,op,q;j,buiteq,teken,kol,qns, 

randY,randX,beginQ,EndQ : integer; 

queenY,queenX : array[-3 .. 11] of integer; 

Beset 

Uit 

count 

f 

Function RandOKb(a,Qx,Qy 

Begin 

randOKb := true; 

kol := abs (Qx); 

ry := abs (Qy); 

: array[l. .13] of integer; 

array[l .. 2] of integer; 

long int; 

: text; 

integer) boolean; 

if (kol=l) or (kol=2) or (kol=4) or (kol=5) {empty lines} 

or (kol=7) or (kol=8) or (kol=ll) then 

begin 

randOKb := false; 

exit; 
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end; 

if ( ry=l) or (ry=2) or 

or (ry=7) or ( ry=8) or 

begin 

RandOKb := false; 

exit; 

end; 

if a=l-buiteq then 

begin 

(ry=4) 

(ry=ll) 

QueenX[a] := Qx; 

QueenY[a] .- Qy; 

exit; 

end; 

QueenY[a] .- Qy; 

QueenX[a] .- Qx; 

or (ry=5) 

then 

for c := 1-buiteq to a-1 do {check for queens on same line} 

if (Qx = QueenX[c]) or (Qy = QueenY[c]) 

or ( (Qy+Qx) 

or ( (Qy-Qx) 

begin 

RandOKb 

exit; 

end; 

randY := -j; 

(QueenY[c] 

= (QueenY[c] 

:= false; 

for randX := 1-j to j-1 do 

begin 

+ QueenX [ c] ) ) 

- QueenX [cl l ) then 
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cc : = O; 

for c := 1-buiteq to a do 

begin 

if queenX[c] = RandX then cc := cc+l; 

if (queenX[c]+queenY[c]) = (randX+randY) then cc:= cc+l; 

if (queenX[c]-queenY[c]) = (randX-randY) thence :=cc+l; 

if cc>l then 

begin 

randOKb := false; 

exit; 

end; 

end; 

end; 

randY := j; 

for randX := 1-j to j-1 do 

begin 

cc : = O; 

for c := 1-buiteq to a do 

begin 

if queenX[c] = RandX then cc := cc+l; 

if (queenX[c]+queenY[c]) = (randX+randY) then cc:= cc+l; 

if (queenX[c]-queenY[c]) = (randX-randY) then cc:= cc+l; 

if cc>l then 

begin 

randOKb := false; 

exit; 
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end; 

end; 

end; 

randX := j; 

for randY := 1-j to j-1 do 

begin 

cc : = 0; 

for c := 1-buiteq to a do 

begin 

if queenY[c] = RandY then cc := cc+l; 

if (queenX[c]+queenY[c]) = (randX+randY) then cc:= cc+l; 

if (queenX[c]-queenY[c]) = (randX-randY) then cc:= cc+l; 

if cc>l then 

begin 

randOKb := false; 

exit; 

end; 

end; 

end; 

randX := -j; 

for randY := 1-j to j-1 do 

begin 

cc := O; 

for c := 1-buiteq to a do 

begin 

if queenY[c] = RandY then cc := cc+l; 
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if (queenX[c]+queenY[c]) = (randX+randY) then cc := cc+l; 

if (queenX[c]-queenY[c]) = (randX-randY) then cc:= cc+l; 

if cc>l then 

begin 

randOKb .- false; 

exit; 

end; 

end; 

end; 

End; 

Function RyOK(a,Qy 

Begin 

integer) : boolean; 

RyOK := true; 

for c .- 1-buiteq to 0 do 

if (Qy = QueenY[c]) 

or ((QueenY[c] + QueenX[c]) 

or ((QueenY[c] - QueenX[c]) 

or ((QueenY[c] + QueenX[c]) 

or ((QueenY[c] QueenX [ c] ) 

begin 

RyOK := false; 

exit; 

end; 

for c := 1 to a-1 do 

(Qy-j)) 

(Qy+j)) 

(Qy+j)) 

(Qy-j)) then 

if ((QueenY[c]+QueenX[c]) = (Qy-j)) 
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or ((QueenY[c]-QueenX[c]) 

begin 

(Qy-j)) then 

RyOK .- false; 

exit; 

end; 

QueenY[a] := Qy; 

End; 

Function RandOK(a,Qx 

Begin 

randOK := true; 

Qy := QueenY[a]; 

QueenX[a] := Qx; 

kol := abs (Qx); 

integer) boolean; 

if (kol=l) or (kol=2) or (kol=4) or (kol=5) or (kol=7) 

or (kol=B) or (kol=ll) then 

begin 

RandOK := false; 

exit; 

end; 

for c := 1-buiteq to a-1 do {check for queens in the same line} 

if (Qx = QueenX[c]) 

or ( (Qy+Qx) = (QueenY[c] + QueenX[c])) 

or ( (Qy-Qx) = (QueenY[c] QueenX[c])) then 

begin 

RandOK := false; 
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for c := 1-buiteq to a-1 do {edge squares in the same col} 

if ((QueenY[c) QueenX[c)) (-j-Qx)) 

or ((QueenY[c) + QueenX[c)) 

or ((QueenY[c) + QueenX[c)) 

or ((QueenY[c) QueenX [cl ) 

begin 

RandOK := false; 

exit; 

end; 

(-j+Qx)) 

(+j+Qx)) 

(+j-Qx)) then 

d := abs(Qy - Qx); 

diag} 

{edge squares in the same d-

if (Qy > Qx) then teken := 1 else teken := -1; 

for c ;= 1-buiteq to a-1 do 

if (abs(QueenY[c) + QueenX[c)) (2*j-d)) 

or (QueenY[c) (j - d)*teken) 

or (QueenX[c) (d - j)*teken) then 

begin 

RandOK := false; 

exit; 

end; 

s := abs(Qy + Qx); 

diag} 

{edge squares in the same s-

if (Qy+Qx > 0) then teken := 1 else teken .- -1; 

for c := 1-buiteq to a-1 do 
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if (abs(QueenY[c] - QueenX[c]) (2*j - s)) 

or (QueenY[c] = (s - j) *teken) 

or (QueenX [c] = (s - j)*teken) then 

begin 

RandOK := false; 

exit; 

end; 

End; 

Function Ryeuitgesorteer 

Begin 

boolean; 

Ryeuitgesorteer := true; 

cc := 1; 

for c := 1 to qns do 

if (Beset[c]=by2) or (Beset[c]=by3) then 

begin 

uit [cc] := c; 

cc . - cc+l; 

end; 

for c .- 1 to uit[l]-1 do QueenY[c] := Beset[c]; 

for c .- uit[l] to uit[2]-1 do QueenY[c] := Beset[c+l]; 

for c := uit[2] to qns do QueenY[c] := Beset[c+2]; 

End; 

BEGIN 

clrscr; 
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k := 7; 

gamma := 2*k + 1; 

j := 14; 

qns := gamma-4*k+2*j-2; 

board} 

{2j+l x 2j+l sub-board} 

{occupied rows cutting sub-

buiteq := 8*k-4*j+4; {qns outside sub-board} 

writeln(4*k+3,' x ',4*k+3,' board'); 

writeln(2*j+l,' x ',2*j+l,' sub-board'); 

writeln(buiteq,' queens outside sub-board'); 

writeln(gamma-buiteq,' queens inside subbord'); 

writeln(qns,' occupied rows cutting sub-board'); 

count := O; 

Beset [ 1] .- -13; Beset [13] := 13; 

Beset[2] := -12; Beset [ 12 J := 12; 

Beset[3J .- -10; Beset [11] := 10; 

Beset[4] := -9; Beset [10] := 9; 

Beset[5J := -6; Beset[9] .- 6; 

Beset[6J := -3; Beset[8J .- 3; 

Beset[7] := O; 

for by3 := -11 to 11 do {queens outside) 

if rand0Kb(-3,-16,by3) then 

for by2 := -12 to 12 do 

if rand0Kb(-2,-15,by2) then 

for bxl := -11 to 11 do 

if randOKb(-1,bxl,-16) then 

for bxO := -12 to 12 do 
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if randOKb(O,bx0,-15) then if ryeuitgesorteer then 

for xl := 1-j to j-1 do {queens inside) 

if RandOK(l,xl) then 

begin 

for x2 := 1-j to j-1 do 

if RandOK(2,x2) then 

for x3 := 1-j to j-1 do 

if Rand0K(3,x3) then 

for x4 := 1-j to j-1 do 

if RandOK(4,x4) then 

for x5 := 1-j to j-1 do 

if RandOK(5,x5) then 

for x6 := 1-j to j-1 do 

if Rand0K(6,x6) then 

for x7 := 1-j to j-1 do 

if RandOK(7,x7) then 

for x8 := 1-j to j-1 do 

if RandOK(8,x8) then 

for x9 := 1-j to j-1 do 

if RandOK(9,x9) then 

for xlO := 1-j to j-1 do 

if RandOK(lO,xlO) then 

for xll := 1-j to j-1 do 

if RandOK(ll,xll) then 

count := count+l; 

write(count,'. '); 
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for c := 1-buiteq to garnma-buiteq do 

write(queenX[c] :4,queenY[c] :3); 

writeln; 

end; 

writeln('Total= ',count); 

readln; 

END. 
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BER, 59 
biggest empty ring, 59 
body, 21 

relaxed, 22 
restricted, 22 

body diagonal, 21 

closed neighbourhood, 1 
core, 21 

relaxed, 22 
restricted, 22 

core diagonal, 21 

d-diagonal, 16 
DCP, 57 
diagonal, 5 

main, 5 
negative, 5 
positive, 5 

distance, 59 
dominating set, 1 

(i,j)-dominating set, 19 
of the queens graph, 2 

domination number 
independent, 2 
of a graph, 2 

double column placement, 57 

edge,5 
of hexagonal board, 55 

edge dominating set, 39 
edge square, 5 
empty cell, 55 
empty diagonal, 19 
even (row, column), 15 
even diagonal, 16 
even queen, 16 
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even square, 4 
even-even queen, 16 
even-even square, 15 
even-odd queen, 16 
even-odd square, 15 

independent domination number 
ofa graph, 2 

independent set, 1 
of queens, 2 

irredundance number, 2 
irredundant 

maximal, 2 
set, 1 
vertex, 1 

irredundant set 
of queens, 2 

line 
on hexagonal board, 55 

meet (rows, diagonals), 5 

neighbour 
private, 1 

neighbourhood 
closed; 1 
open, 1 
private, 1 

occupied, 5 
odd (row, column), 15 
odd diagonal, 16 
odd queen, 16 
odd square, 4 
odd-even queen, 16 
odd-even square, 15 
odd-odd queen, 16 



odd-odd square, 15 
open cell 

of hexagonal board, 55 

open cell or square, 69 
open neighbourhood, l 

pn-destroyer, 69 
pn-less, 69 
point on a diagonal, 16 
private neighbour, l 
private neighbourhood, l 

radius (of a queen), 41 
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relaxed 
body, 22 
core, 22 

restricted 
body, 22 
core, 22 

restricted core, 21 
ring, 58 

s-diagonal, 16 

unoccupied, 5 


