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Summary

The queens graph ¢J,, has the squares of the n X n chessboard as its vertices; two squares
are adjacent if they are in the same row, column or diagonal. A set ID of squares of
(n 15 a dominating ser for ), if every square of (), is either in I or adjacent 1o a
square in [7. If no two squares of a set [ are adjacent then I is an independent set.
Let ¥(Qx) denote the minimum size of a dominating set of (J, and let i((J,,) denote
the minimum size of an independent dominating set of (J,,. The main purpose of this
thesis is to determine new values for (f},). We begin by discussingthe mostimportant
known lower bounds for v(},,) in Chapter 2. In Chapter 3 we state the hitherto known
values of ¥({),) and explain how they were determined. We briefly explain how to
obtain all non-isomorphic minimum dominating sets for (Ja (listed in Appendix A). It
is often useful to study these small dominating sets to look for patterns and possible
generalisations. In Chapter 4 we determine new values for v (Qso), ¥ ((27), ¥ ((Zs0)
and i ((J4s) by considering asymmetric and symmetric dominating sets for the case
n = 4k + 1 and in Chapter 5 we search for dominating sets for the case n = 4k + 3,
thus determining the values of 7 ({)1¢) and -y (Qs;). In Chapter 6 we prove the upper
bound v (Q,) < fin + O (1), which is better than known bounds in the literature and
in Chapter 7 we consider dominating sets on hexagonal boards. Finally, in Chapter 8
we determine the irredundance number for the hexagonal boards Hy and Ho, as well
as for (J5 and (Jg. |

Key terms: chessboards, queens graph, queens domination problem, domination, ir-

redundance, hexagonal boards.
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Chapter 1
Introduction

As far as could be established, the earliest ideas of dominating sets date back to the
origin of the game of chess in India over 400 years ago. Chess, of course, is much more
than merely a mathematical activity; nevertheless, in chess one studies sets of chess
pieces which cover, or dominate, various opposing pieces or various squares of the
chessboard. Chessboard domination problems thus initiated the study of dominating
sets of graphs, at first rather informally until the topic of domination was given formal
mathematical definition with the publication of the books by Berge [2] and Ore [14]
in 1962,

For a given graph G = (V| E) and a vertex v € V, we denote the open neigh-
bourhood of v by N (v) and the closed neighbourhood by N Iy, thatis, N (v) =
{fueV|uwe E}and N [v] = N (v)U{v}. For§ C V wedefine N [S] = [ J, o N [3].
We further define the private neighbmrhood of v € S as pnv, S] = N{v] — Ni§ —
{v}]. I pn[v, S] # @ for some vertex v, then every vertex in pn[v, 5] is called a private
neighbour of v (relative to S). Note that a vertex can be its own private neighbour. A
set 5 C V is called a dominating set of G if each vertex of G which is not in 5, is ad-
jacent to a vertex in .5, that is, NV [S] == V. Further, S is an independent set if no two
vertices in S are adjacent in . A vertex v € 5 i8 irredundant in S if 1t has at least

one private neighbour relative to .S, and the set S is irredundant if every vertex v € S
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is irredundant in S. An irredundant set S is maximal irredundant if for every vertex
uw € V — §, the set S U {u} is not irredundant, which means that there exists at least
one vertex w € S U {u} which does not have a private neighbour.

The domination number - (G) (the independent domination number i (), respec-
tively) of the graph G is the smallest number of vertices in a dominating set (an inde-
pendent dominating set) of G. The minimum cardinality of a maximal irredundant set
in G is called the irredundance number and is denoted by ir((7). As shownin [7], a
minimal dominating set is also 2 maximal irredundant set. Since an independent dom-
inating set is a dominating set by definition, it follows that ir (G) < v(G) < i (G) for
any graph G.

That even the original chessboard domination problems are astonishingly difficultis
apparent in view of the fact that so few of these problems have been solved completely.
The unsolved classical problems were important in motivating the revival of the study
of dominating sets in graphs in the early 1970’s. One of the most interesting — and
most difficult — chessboard problems is the queen domination problem in which one
has to determine the minimum number of queens necessary to cover (or dominate) all
squares on an n X 7 chessboard. This can also be considered as a graph domination
problem, in the following way: |

The queens graph Q,, has the squares of the n x n chessboard as its vertices; two
squares are adjacent if a queen placed on one Square covers the other square, that is,
if the squares are in the same row, column or diagonal. A set I of squares of (), 1s a
dominating set of Q,, if every square of (), is either in D or adjacent to a square in 12,
If no two squares of a set [ are adjacent, then [ is an independent set . If each queen on
a set X of squares covers a square which is not covered by a queen on any other square
in X, then X is an irredundant set of Q,,. As for graphs in general, ¥(Q,) denotes

the minimum size of a dominating set for @, ¢(Q),) denotes the minimum size of an
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independent dominating set of @, and ir(Q,,) denotes the minimum size of a maximal
irredundant set of Q,,. We emphasize that for any n, ir(Qn) < v(Qn) < 1(Qy).

In 1862, C. F. de Jaenisch [8] considered the problem of determining values of
~4(@,), and in 1892, W. W. Rouse Ball [1] gave values of v(Q,) up ton = 8. Much
more recently P H. Spencer, as cited in [6, 17] , proved the lower bound v(Q,) >
%(n — 1), n > 1. Several researchers (see [6, 9, 10, 4] ) established upper bounds.
W. D. Weakley [17] refined the lower bound by proving y(Qux+1) > 2k + 1 for all
k > 0. He also showed that v(Qyx11) = 2k+1fork = 3,4, 5, 6 and 8 by constructing
dominating sets of order 2k + 1. A. P Burger [5] added k¥ = 9,12,13 and 15 to
the list and P B. Gibbons and J. A. Webb [11] filled in the gaps by finding sets for
k ==7,10,11 and 14 so that y(Qu+1) = 2k + 1 for 0 < k& < 15. For surveys of this
and other chessboard problems see [2, 9, 13] .

The main purpose of this thests is to determine new values for y(@Q, ). We begin by
discussing the most important known lower bounds for (@), ) in Chapter 2. In Chapter
3 we state the hitherto known values of v(Q,,) and explain how they were determined.
We briefly explain how to obtain all non-isomorphic minimum dominating sets for
(s (listed in Appendix A). It is often useful to study these small dominating sets to
look for patterns and possible generalisations. In Chapter 4 we determine new values
for vy (Qes), ¥ (Q77), 7 (Qa0) and Z (Q45) by considering asymmetric and symmetric
dominating sets for the case n = 4k + 1 and in Chapter 5 we search for dominating
sets for the case n = 4k + 3, thus determining the values of y (Q19) and 7y (Q31). In
Chapter 6 we prove the upper bound v (@) < s=n+O (1), which is better than known
bounds in the literature and in Chapter 7 we considér dominating sets on hexagonal

boards. Finally, in Chapter 8 we determine the irredundance number for the hexagonal

boards Hg and H7, as well as for Q5 and (5.



Chapter 2
Lower bounds for the domina-

tion number of (),

In this chapter we discuss lower bounds for y(Q),). We begin with the proof of
the bound ¥(Q,) > 1(n — 1) found by Spencer We then give some properties of
dominating sets, discovered by Weakley, which attain this bound, and which lead to a
refinement of this bound.

Noie that any one queen can attack at most 4r: — 3 squares on an n X n chessboard:
A queen closest io the centre of the board dominates the most squares (4n — 3 if n2 is
odd) and all other queens dominate fewer squares. Therefore y(&,.) is bounded below
by 4n. Until quite recently, no non-trivial lower bounds were known, in spite of the
fact that this problem dates as far bar;k as 1862,

We will identify the 7 X n chessboard with a square of side length n in the Carte-
sian plane, having sides paralle! to the coordinate axes. We usually place the board so
that the centre of the lower left comer square has coordinates (1,1), and refer to board
squares by the coordinates of their centres. In some cases we place the board so that
the centre square has coordinates (0,0). The square (z,y) is in the column z and row

y. A square is called even (respectively odd } if the sum of its coordinates is even (re-
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spectively odd). Notice that diagonals consist of squares with the same parity. Positive
and negative diagonals are sets of squares whose centres lie on lines of slope 1 and
-1, respectively. The main diggonals are the two diagonals from camer square to cor-
ner square. The edge squares are the 4n ~— 4 squares on the edge of an n x n board.
The set of all edge squares is also referred to as the edge. A set of squares (rows, di-
agonals, etc.) meef another set of squares in the intersection of the two sets. A square
(row, column, diagonal) is said to be occupied if there is a queen on that square (or in
the row, column, diagonal); otherwise it is unoccupied,

The following theorem by P H. Spencer gives a lower bound for y((,,). The proof

given can be found in [17] .
Theorem 2.1 For each positive integer n, ¥((3,) > 3(n — 1),

Proof. It is easy io see the theorem is true for n < 3, so we assume n > 3. Note that
placing queens at (i,7) for all  but 1 and 3 gives a don{inating set of 1 — 2 queens, so
¥(QRn) < n— 2. Thus any dominating set of minimal size leaves at least two rows and
two columns empty.

Assume we have a dominating set for Q,,, n > 3, with v = () queens, Let
a be the number of the leftmost empty column, b the number of the rightmost empty
column, ¢ the number of the lowest empty row, d the number of the highest empty row
By symmetry we may assume d — ¢ < b — ¢. This inequality implies that we can find
b~ a consecutive rows including those rows lying strictly between rows ¢ and d. Thus

there exist an integer /m and rows
mm+1m+2 ..., m+b—a-1, 2.1
with

l<m<ct+landd~1<m+b-a—-1<n. (2.2)
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For such an m, let Sy, be those squares in columns « and b which are in the rows (2.1)
and let F,, be all the squares below row rm or above row m + b — @ — 1 which contain
queens. Since all rows above d or below ¢ contain queens and at most one of the rows
below or above 5, can be empty, namely row ¢ or d (temember b — a > d — ¢), we

have
IPrlzn—(b—a)—1. 2.3

No diagonal contains more than one square of 5., so no queen diagonally attacks
more than two squares of S,,. Queens of F,, do not attack any squares of S, by row
or column, so each attacks at most two squares of S,,,. Other queens attack at most

tour squares of S;,,. Each of the 2(b — a) squares of Sy, is attacked, so
2(b—a) < 2|E,|+4(y— |Pul)

— 4y—9P,| (2.4)
= dy-2n-(b—a)-1j

which simplifies to y > L{n — 1). |

Placing a queen on the centre square of 5 shows ¥((;) = 1 and Figure 2.1 shows a
placement, establishing ¥((211) = 5. No other cases are known in which the bound of
Theorem 2.1 holds. In Chapter 5 we investigate this matter further The next theorem
by W. D. Weakley [17] gives some idea of why the bound of Theorem 2.1 is rarely

attained. This result also yields a refinement of the bound in Theorem 2.1, namely

Y Qar1) = 2k + 1.
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Figure 2.1 v ((}11) =5

Theorem 2.2 Let R be a dominating set of Qy such that |R| = 3(n —1). Then
1. n=3(mod4).
2. Ris independent.
3. There is an odd integer j, %(n +1) < j < n,suchthatthereisa j x j
sub-board U of Q,, satisfying:
(a) each edge square of U is attacked exactly once;
(b) eachrow or column of Q,, that doesnot meet U contains exactly

one queen, as does each main diagonal of U.

Proof. We use the notation and definitions of the proof of Theorem 2.1 and assume
that R is a dominating set of size 3(n — 1) of Qn, oriented so thatd — ¢ < b — a. Let
m be any integer satisfying (2.2). From (2.4) we have 2(b — a) < 4y — 2|Fp|, and
together with || = 1(n — 1) we obtain |Pp| < n — (b — a) — 1, which with (2.3)
implies || =n— (b —a) — 1.
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If ¢ — ¢ < b— o then we can choose . satisfying (2.2) so that both rows ¢ and
meet Sy,. Then each row not meeting S, contains at least one queen, giving | F,| >
n — (b — a), a contradiction. Therefore d — ¢ == b — a.

Letj = b—a+1andlet UV be the j X j sub-board having comers (a, ¢}, (a,d), (b, c)
and (b, d). Let F denote the set of edge squares of I/

The only values of m satisfying (2.2) are m = c,¢ + 1. Since |P| = [F.] =
n— (b - &) — 1, each row that does not meet I/ contains exactly one queen. Similarly
each column not meeting U contains exactly one queen.

Since the inequalities in (2.4) are equations when | A| = v = 1(n— 1), forboth m =
cand m = c41 each queen of F,, must attack two squares of &,,, diagonally, necessarily
one along each diagonal. Therefore every queen of R lies strictly between the positive
diagonals through (a, d) and (b, ¢), and strictly between the negative diagonals through
(a,¢) and (b,d). From this fact we draw two conclusions.

First, no queen has the property that both its row and its column miss U, 50 there
are 2(n — ;) queens outside U, each attacking six squares of E. The remaining (n —
1) — 2(n — j) queens each attack eight squares of £, so the number of squares of E

attacked is at most
6.2(n — 5) + 8[+(n — 1) — 2{n — 7],

which equals 4(7 — 1). Since X ts a dominating set and F contains 4(7 — 1) squares,
each square of I is attacked exactly once. This establishes (a).

Second, the corner squares of U7 are not attacked diagonally from outside U. Since
these squares lie in unoccupied rows and columns, they must be diagonally attacked
from inside U/, Thus the long diagonals of U are occupied. This shows there is at
least one queen inside U, and since there are 2(n — j) queens outside I7 we have

L+ 2(rn — j) < 2(n — 1), which reducesto 3(n+1) < j.
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If R is dependent then there are two queens in some line (row; column, or diagonal);
since each square of ¥ is aitacked only once, that line does not meet . All diagonals
from occupied squares meet F, so the line is a row or a column. But a row or column
that does not meet £ also does not meet [/, and we have shown that the rows and
columns not meeting [/ each contain only one queen, so no line contains two queens.
Therefore B is independent, and (b) is also established.

We now show n = 3 (mod 4). Let IJ denote the set of squares of ¥ that lie below
the long negative diagonal of I/. Let I denote the set of occupied squares that lie below
the extension of the same diagonal to the n x n board. Each queen of R attacks exactly
one square of D along its positive diagonal. Each of the 2(n — 7) queens outside [/
attacks exactly one square of 12 by row or column, Each of the queens inside [/ attacks
exactly two squares of D by row or column. Finally, each queen of L attacks exactly
two squares of D) along its negative diagonal, and other queens do not attack squares
of D along their negative diagonals. Since each of the 27 — 3 squares in /) is attacked

exactly once, we have

S0 =1)+2n — )+ 20

This reduces to n = 4| L| + 3, son = 3 (mod 4) and 3(n —1} is odd.

(n--~1)=—~2(n~—j)]+2|L]:2jm3k

Suppose that 7 is even. Then the set £ contains equal numbers of even and odd
squares. Since j is even, any occupied row or column that meets E does so at one
even and one odd square. Thus the subset of E consisting of those squares that are
attacked diagonally must contain equal numbers of even squares and odd squares. This
implies that the number of queens on even squares equals the number of queens on odd
squares, and thus the total number of queens is even. But the total number of queens

is 2(n — 1}, which is odd. This contradiction implies that j is odd. D
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Corollary 2.3 For each non-negative integer k, v((Jags1) > 2k + 1.

Proof, From Theorem 2.1 we have y{Qux11) > 2k, but from Theorem 2.2 (1) equality
cannot hold, therefore y{Q4xs1) = 2k + L. C

10



Chapter 3
Known values of the domination
and independent domination num-

bers of (),

In this chapter we list the known values of v and 7 and describe how they are deter-
mined. We also describe how to obtain all non-isomorphic mintmum dominating sets
for {Js.

Tables 3.1 and 3.2 give the known values for -y and i. For n < 3 we have v((J,,) =
(&) = 1. For n < 5, optimal placements are easily discovered by trial.

Most of the values of  are established by a placement which attains some lower
bound, With Spencer’s bound, i(Q,) 2 (@) 2 %(n — 1), ¥(@n) = i(@n) =5
is established, However, n = 3 and n = 11 are the only values known for which
this bound holds exactly. If » is even Spencer’s bound becomes ~{Qa,) > m, and
this together with dominating sets of the rquired size establishes values for v forn =
4,6,10,12,18 and 30. The value v(Q1s) = 9 was determined by A. McRae [10],
and we will explain in Chapter 4 how the value v(Q3p) = 15 is obtained. The bound
YQur1) 2 2k + 1 together with dominating sets of this size establish values for

11
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yfor 1 < k < 15 (the case y((1) = 1 being trivial) as well as & = 17 and 19.
Weakley [17] claimed k = 3,4,5,6 and 8, the values for k = 9,12,13 and 15 were
determined in [3] while Gibbons and Webb [11] claimed & = 7,10,11 and 14. We
will explain in Chapter 4 how these valués,, including the new values for k = 17 and
19, are determined. The exceptional value y((Js)} = 5 is claimed by W. W. Rouse Ball
[1], and Weakley [17] proved v((7) = 4 of which we will give an alternative proof
in Chapter 5. The values 7{Q19) = 10 and v({23) = 16 are also explained in Chapter
5.

S|61718(5110) 111213 M 1516 1719 30| 31
6| 7 W8 8% 1R 9 9 1015 16
4414151515 51717 3 9 9 g

W b |
(W8]
(]
(]

Table 3.1 Known values for «y and i

5161718910011 (12[13714715)17§19
21 1251293337141 45|49 |55 576169177
W3 |15 (1719211232527 2913113539
11113 17 23

SREY FRES

Table 3.2 Known values for 7y and ¢

From Table 3.1 we can see that there are only three values of » for which it is
known that v(Q,)} < i(Q,). The value i(G2) = 7 (see [3]) is obtained by doing
an exhaustive search on all independent sets of six queens, showing that i(()s) # 6.
Gibbons and Webb [11] did the same to establish the values of 7 for n = 14,15 and
16. '

To confirm the values of ~ in Tables 3.1 and 3.2 we need to give some placements
of dominating sets. All possible minimum dominating sets of J,, up to n = 11 can be
found by computer, simply by checking all possible placements of queens. For n > 5,

all possible solutions, up to symmetry, are listed in Appendix A. Gibbons and Webb

12
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E A

G B

Figure 3.1 Reflections of the chesshoard

determined all possible placements of minimum independent dominating sets up to
n = 15. If the number of dominating sets is small, reflections and rotations can be
eliminated by hand. However, for n = 8, there are 638 different optimal dominat-
ing sets. To ensure that no reflections or rotations of dominating sets are repeated,

dominating sets for » = 8 are onented s0 that:

(1) most (three or more) of the queens are in the lower half of the board,
(2) most of the queens are in the left half of the board;

(3) most of the queens are on or below the positive main diagonal.

Note that (1) ensures that reflections about CD (see Figure 3.1) and 180° rotations are
not repeated and (2) ensures that reflections about AB are not repeated. (1) combined

with (2) ensures that 90° and 270° rotations as well as reflections about EH are not

13
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repeated. Note that all these symmetries are eliminated, because n is even and the
number of queens is odd. The only symmetry left, is the reflection about FG, most
of which are eliminated by (3). The reflections which (3) does not eliminate are the
dominating sets with an odd number of queens on the positive diagonal with the same
number of queens below and above the concerned diagonal. In this case we listed the
first dominating set according to the lexicographic ordering of ordered pairs.

We now give dominating sets of (), for those values of n listed in Table 3.1, where
13 € n < 25. Where sets are symmetric, Z.e. for Q3, 15, G17, Q21 and Qas,
the centre square has coordinates (0,0), otherwise the lower left corner square has
coordinates (1, 1). Where y(Q),,) = i(Q,), we list the independent set. The dominating
and independent dominating sets for ()12 can be obtained by simply adding a queen
(respectively two independent queens) to the minimum dominating set for ¢)y; given

in Appendix A. Dominating sets for n > 29 are listed in Chapter 4.

Qus.  £(1,-5),£(3,-1),£(5,3),(0,0).

Qu. (2,6),(4,14),(6,4),(8,10),(10,2), (12,8), (13,1), (14, 14).

Qs £(1,3),£(3,7),£(5,1),£(7, -5),(0,0).

Q- (1,13),(3,7),(5,1),(7,5),(8,8), (9, 11),(11,15), (13,9), (15,3).
Qur.  +(2,4),+(4,—8), +(6, 2), +(8,—6),(0,0).

Q. (2,10),(4,16), (6,2), (8,12),(10,8), (12,4), (14, 14), (16, 18), (18, 6).
Qu. £(1,3),£(3,9),+(5,=7),£(7,—1), £(9,5), (0, 0).

Qas.  £(1,5),+(3,11), £(5,—1), £(7,9), £(9, —7), £(11,3), (0, 0).

14



Chapter 4
Domination on (41

In this chapter we consider dominating sets for (J4x+1 with one queen in every sec-
ond row and column. Figure 4.1 is an example of such a set. Such dominating sets
have 2k + 1 queens, therefore reach the bound v(Qux+1) = 2k + 1. Thus finding such
sets for a specific k establishes ¥(Q4x+1) = 2k + 1 for that k. Since the case k = Qs
trivial, we will assume henceforth that & > 1.

We label the rows and columns of the chessboard as illustrated in Figure 4.1, A
row or column is called even (respectively add ) if it has an even (respectively odd)
label, A square of the chessboard is called even-even, even-odd, odd-even, or odd-odd
according to the labels of its row and column. With queens on every even row and
column all the squares in one of these rows or columns are dominated. Hence the only
squares that need to be considered are the odd-odd squares (shaded in Figure 4.1), that
must be dominated diagonally. We can simplify the representation by drawing only
the odd-odd squares. (See Figure 4.2). Imagine that the even rows and even columns
are squeezed to be only lines. Place the simplified board on the z-y-plane with the
centre of the board at coordinates (0,0) and the lines formed by the even rows and
columns at unit lengths from each other The diagonals (of squares) that rise from left
to right correspond to the straight lines with equations y = ¢ + d, whered € {—(2k —

1},...,-1,0,1,...,2k—1}. These diagonals orlines, which we use interchangeably,

15



Chapter 4 Domination on (4,1

" ' " H ] i
R T N L T — T % TR U - SR O B Y

Figure 4.1 A dominating set for Q13

are called d-diagonals and are labelled d = —(2k - 1),...,d = ~1,d = 0,d =
1,...,d = 2k — 1 according to their intersecfions wiih the y-axis. Similarly, the s-
diagonals fall from left to right, and comrespond to the straight fines with equations
y=-—r+s 8 {—(2k—1),...,-1,0,1,...,2k—1} and are also labelled according
to their intersections with the y-axis. An even (odd) diagonal is a diagonal with an
even (odd) intersection with ihe y-axis. Notice that a queen ihat lies on an odd (even)
d-diagonal, also lies on an odd (even) s-diagonal and vice versa. Sometimes we will
refer to queens on odd (even) diagonals as odd (even) queens. Asin the case of squares
of the chessboard, a queen in the simplified representation is called even-even, even-
odd, odd-even or odd-odd according to the parity of its coordinates. By a point on a
d-diagonal (or s-diagonal ) we mean an intersection point of its corresponding line

and a line formed by an even row or column.

16



Chapter 4 Domination on Q441

oy o b SO N
L, G bb&,
4
\\ *
2
—§
-3 -2 2 3
&
-2
»

-3

Figure 4.2 Simplified representation of {J13

Notice that the difference between the ¢ and x coordinates of any point on a d-
diagonal is equal to its label. Similarly the sum of the coordinates of any point on
the s-diagonals is equal to its label. Figure 4.3 illustrates these concepts for a general
board.

Henceforth, when we refer to a dominating set D of {243 41, we assume that, unless
stated otherwise, || = 2k + 1 and that there is one queen on each even row and each
even column. According to the representation of (J4x1, described above, we consider
these queens to be placed on points on the diagonals of €J4x1. The coordinates of the
queens are then the coordinates of the points (in the plane} on which they are placed.
Notice that a queen with coordinates ( 2z, 2y) on the normal chessboard has coordinates
(x,%) on the simplified representation. Henceforth, when we refer to coordinates,
unless stated otherwise, it will be of the simplified representation. We now prove some

properties of such dominating sets of ;.. Some of these results were also reported

17



Chapter 4 Domination on @ax+1

X ~ J’% 4-‘\
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Figure 4.3 Numbering of diagonals

in [3] .

4.1 Properties of dominating sets

Lemma 4.1 [3] If D is a dominating set of (Jary1 and there are no queenson d = i

{respectively a = 1), then there must be queens on:

s(d) = 0,42, +4,... (i~ 1), £ +1),..., (2% - i| -1},  sodd

s(d) =21, 43,... (G — 1), =i +1),...,£(2%k — lij ~ 1),  ieven
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Figure 4.4 Squares not dominaled by d-diagonal must be dominated by s-diagonal

Proof. All squares concerned must be dominated diagonally. Thus if a square is not
dominated by a d-diagonal, it must be dominated by an s-diagonal and vice versa. (See

Figure 4.4) 0o

A diagonal which does not contain a queen is called an empty diagonal. Beginning
with the diagonals s = ( and 4 = 0, a dominating set with the first empty s-diagonal
8 == 1 0r 8 = —1i and the first empty d-diagonal 4 = 7 ord = —j is called an (1, 5)-
dominating sef, 1,7 > 0. We now show that with respect to the first empty diagonals

there are only two types of dominating sets.
Theorem 4.2 [5] There are precisely two types of dominating sets:
(@) (i, 1)-dominating seis with queens on the diagonals
s,d=0,%1,4£2,... (- 1), =4 +1),...,£(%k—ji|~1). @D
(b) (1,74 2)-dominating sets with queens on the diagonals
d=0,+1,%2,... ,£i, (i + 1), £ +3),..., £(2k = Ji| - 1).  (4.2)
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s=0,£1,%2,..., 20— 1), 2 +1),...,+(2k — |i| - 3). (4.3)

1

Proof. Without loss of generality we can assume that the first empty diagonals are
positive, because the set of queens can be rotated and/or "flipped”. If D is an (g, 4)-
dominating set, it follows from Lemma 4.1 and the fact that s = i and d = { are the
first empty diagonals that there are queens on the diagonals in (4.1). (See Figure 4.2
for an example of a (1,1)-dominating set.)

Now suppose D is an (4, j)-dominating set with j > 4. Becaused = j > i is
the first empty d-diagonal, there are queens on & = 0, %1, £2,...,£i. Also, because
8 =: 1 is empty it follows from Lemma 4.] that there are queenson d = £(i+1), £{i +
3),...,x£(2k~]i|~1). This gives (1+21)+ (2k —2¢}) = 2k+1 d-diagonals containing
queens. But there are only 2%+ 1 queens available. Thus (4.2) are the only d-diagonals
containing queens, so that j = ¢ + 2. Sinced = ¢ + 2 is empty and 3 = i is the first
empty s-diagonal it follows from Lemma 4.1 that there are queens on the diagonals

listed in (4.3). (See Figure 4.5 for an example of an (1,3)-dominating set.) O

Lemma 4.3 [5)] If D isa dominating set of Q a1, then there is a one-to-one corre-

spondence between ever-odd and odd-even queens.

Proof. Consider all the z-coordinates and all the y-coordinates of queens in ). Since
eachintegerintheset {—k,...,—1,0,1,...,k} occurs as z-coordinate of some queen
and as y-coordinate of a (possibly different) queen, there are just as many even (odd)
z-coordinates ag even (odd) y-coordinates. Thus there is a one-to-one correspondence

between even-odd and odd-even queens. 0

Lemma 4.4 If D is a dominating set of QQuy.1, the mumbers of even-even and odd-
wdd queens differ by one.

Procf. Consider all the z-coordinates and all the y-coordinates of queens in 1), namely

{—k,...,~1,0,1,...,k}. Depending on the parity of k, there are either one more

20
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Figure 4.5 Simplified representation of (17

even coordinate than odd coordinates or vice versa. Thus because there are just as
many even-odd queens as odd-even queens (Lemma 4.3), the number of even-even

and odd-odd queens must differ by one. a

Depending on the parity of 7, there are either more odd queens or more even queens
in a dominating set I? of Q4¢4; (See Theorem 4.2). Cali the smaller of these sets
the core of 1), and the bigger one the body of [). The core diagonals (respectively
body diagonals) are the diagonals listed in Theorem 4.2 with core (respectively body)
queens on it. Note that there can be core (body) queens that are not on the core (body)
diagonals.

Lemma 4.5 If D isan (i,i)-dominating set, then there are i — 1 core s (d)~diagonals
- and 2k — i body s (d)~diagonals.

Proof. There must be queens on s(d) = 0,+1,+2, ..., 20 — 1), £( + 1),...,

21
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+(2k — ¢ — 1). Ifiis even the core diagonals are 0,+2, +4, ..., £(¢ — 2} and the
body diagonals are +1,+3, +5,...,£{2k — 7 — 1). This gives i + 1 and 2k — ¢ core
and body diagonals respectively. Similarly, if ¢ is odd we get the same numbers of

diagonals, O

Consider an (i, 1)-dominating set D). If there are only i1 queens in the body, there can
only be one queen on each core diagonal. We then say the core is restricted. Similarly,
if there are only 2k — 7 queens in the body we say the body is restricted, If the body
(respectively core) has more than 2k — 1 (respectively 7 — 1) queens we say the body

(respectively core) is relaxed.

Lemma 4.6 If D is an (i,i)-dominating set then either the core or the body is re-

loved

Proof. There are 2k + 1 queens and 2k — 1 s (d)-diagonals that must contain queens.
Therefore there are two extra queens. If ¢ is even, there is an even number of body
diagonals, namely 2k - i odd s (d)-diagonals. Because there must be an even number
of odd queens (Lemma 4.3), both or none of the two extra queens must be in the body.

If ¢ is odd, the number of odd s (d)-diagonals is also even, namely i — 1 (in the core).
Again to keep the number of odd queens even, both or none of the two exira queens

must be in the core. d

4.2 Description of Algorithm

For each k, ¢ and type of dominating set D) of (454, we run a different programme.
The algorithm considers all possibilities of placements of queens on s-diagonals, elim-
inating non-dominating sets as soon as possible. The fact that there is only one queen

per s-diagonal and d-diagonal speeds up the programme considerably. We treat (7,1)
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and (1,4 + 2) sets slightly differently:

(7,7 + 2)-dominating sets: We have queens on the diagonals listed in (4.2) and (4.3).
Since there are 2k + 1 d-diagonals containing queens, there is only one queen on each
d-diagonal listed and no queens on any other d-diagonals. There are 2k — 3 s-diagonals
that must contain queens. That leaves four extra queens that can be either on diagonals
listed in (4.3) or on other s-diagonals. The algorithm considers all possibilities of one
gueen on each s-diagonal listed in (4.3), making sure there are not more than one queen
on any d-diagonal, row or column. That will leave four d-diagonals {two in the body
and two in the core}) listed in {4.2) without queens. We then try to place the remaining
four queens on these d-diagonals. See Programme 1 in Appendix B for an example

programme.

(¢,1)-dominating sets: Either the core or the body must be relaxed. The algorithm
considers all possibilities of one queen on each s-diagonal listed in (4.1), making sure
there are not more than one queen on any d-diagonal, row or column. However, in
the relaxed part (body or core) we allow on two occasions any one of the following
relaxations: (1) a queen on the same d-diagonal than a queen already placed or (2) a
queen that is not on a d-diagonal listed in (4.1). We then try to place the remaining two
queens, If the core is restricted we can determine ﬁrst if such a core is possible. (For

example, there are no restricted core sets for i = 7.)

4.3 Results

We did a computer search for (¢, 4+ 2) and (7, 1)-dominating sets and found dominating
sets for all £ up to & = 14. Several of these are asymmetric sets not found before,
including independent sets for (4. Tables 4.1 and 4.2 give the number of (i,i + 2)

and (4, 1) dominating sets found.
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With a computer search we found that for k = 8 and ¥ = 11 some sets are inde-
pendent, establishing 7(Qaa) = 17 and ¢(Qus) = 23. We also searched for sets that
dominate an additional row and column, and found two such sets for & = 7, estab-
lishing v((230) = 15. We now give a list of coordinates of minimum dominating sets
for 7 < k < 14, confirming some of the results in Tables 3.1 and 3.2. For ()33 and
(s we give independent sets. We give only the corresponding y-coordinates of the
z-coordinates (—k,...,—1,0,1,..., k), where the coordinates correspond to those of
the simplified representation as illusirated in Figure 4.2.

(Jao. (0,5,4,1,-3,9, 46,2,-1,-7, 8,3, -2, -5, 4). This also dominates (Jsg.

(Qs3. (4,-3,-8,3,6,-2,-6,2,-1,-7,8,5,1,-5,0,7, 4).

(a7, (-2,3.6,9,-8,5,-4,-7,1,0,-1,7, 4, -5, 8 -9, -6, -3,2).

Qu. (-2,-5,8,5,-6,9,6,-7,1,-3,-8,0,3,-5,10,7,-10, 4, 2, -1, -4).

Qus. (6,-5,0,5,-6,-11,10,7,-3,2,-10, .2, 3, -9, -1, 11,8, -7, 4, 1, -8, 9, -4).

Quo. (5, 6,-1,10,-7, 4, -8, -2,-9,12, 11,3, 0, -3, -11, -12, 9,2, 8 -4, 7, «10, 1,
6, 5).

Qs3. (-6,12,-2,5,-8,9,4,13, 10, 7, -1, 11,3, 0, -3, -11, 1, -7, - 10, -13, -4, -9, 8,
5,2,-12, 6).

57, (6,-7,10,7, -8, 3, 8 -13,-10, 9, -6, -11, -1, 4,-12, 0, -3, 13, 1, 5, 14, 11,
-14,12,-4,-9, 2, -5, -2).

We note that many of the dominating sets listed in Tables 4.1 and 4.2 are 180°-
symmetric. Much bigger sets can be searched for if we restrict our search to 180°-
symmetric sets and even bigger sets if we restrict our search to 90°-symmetric sets,

which will be considered in the next two sections.

4.4 180°-symmetric dominating sets

The following results concern 180°-symmetric sets, that is, placements of queens that
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Eln (1,3 24| 3,5 (46) | 3.7 J
219 0+l

3113 042 | 140

4 17| 0+4 { none | 140

5121 0+3 | 1+2 0+1 nong

6 |25] 0+2 | 0+2 | none 1+0 none
7 129 none | O+3 0+3 nong none
£ 133 i none | O+11 | 242 none none
9 ;37| none | 1240 | 4+48 none none
10 | 41 none | 0+109 | O+25 none
11 1 45 none | 0+165 | 0+68 0+30
12 { 49 none | none | 36+672 | (85

| 1457 ] 0+30%

*Number of sets found in first two hours

Table 4.1 Number of symmetric + asymmetric (¢,{ + 2)-dominating sets found

(i [AHTRHTEH[EH[GCSH] (66 ]
2109 1+0

3113 140 | 140 | none

4 [ 17] 340 | 4+0 | none

5 121 inone| 2+1 § 2+0 | none

6 |25 | none| 3+0 | 3+1 | none

13 ]33 164+196

Table 4.2 Number of symmetric + asymmetric (¢, 7)-dominating sets found
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Chapter 4 Domination on ¢ gx+1

are invariant under a rotation of 1807 of the board. We note that since there is only one
queen on each row and column, it follows that a 180°-symmetric dominating set must

have a queen on (0,0).

Lemma 4.7 If D is a 180°-symmetric dominating set of (Qyryy. the number of pairs
of queens on odd diagonals is even.

Proof. By Lemma 4.3 there is a one-to-one correspondence between even-odd and
odd-even queens. Because 12 is symmetric, for each even-odd queen there is another
even-odd queen. The same holds for each odd-even queen. But the even-odd and odd-
even queens lie on the odd diagonals and it follows that there is an even number of
queens on odd diagonals. | i
Theorem 4.8 If 1) is a 180°~symmerric (i,1+ 2j-dominating set with

(a) ieven, then k — Siiseven

(b) iodd then L(i+ 1) is even.

Proof. Consider an (7,7 + 2)-dominating set:

{(a) i even. By Theorem 4.2 the number of pairs of queens on odd d-diagonals is
k — 1i. By the labelling of the diagonals , if a queen is on an odd d-diagonal it is also
on an odd s-diagonal. Therefore the total number of pairs of queens on odd diagonals
isk — 31, ByLemma 4.7, k — 3 is even.

(b) ¢ odd: Again, by Theorem 4.2, the number of pairs of queens on odd diagonals
is £(i + 1). Thus the total number of pairs of queens on odd diagonals is $ (i + 1) and

it follows from Lemma 4.7 that 3 (3 + 1) is even. a

Theorem 4.9 If D is an 180°-symmetric (i,1)-dominating set, then:
1. The body is restricted if:
(@) iisoddand 5(i~1)is odd

(b) ¢isevenand k — 3iis even.
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| % | n |~ | type | Noofsets |
15161]31]66)] 338
1716535 (68) 3282
6177 (3578 | 14552

Table 4.3 Symmetric dominating sets found

2. The core is restricted if:
() iisoddand 3(i — 1) iseven

(c) iisevenand k — 3iisodd

Proofl. By Lemma 4.6 either the body or the core ié relaxed,

If i is odd, the core diagonals are odd. By Lemma 4.5 there are 7 — 1 core diagonals.
Since there must be an even number of pairs of queens on odd diagonals (Lemma
4.7), the core is restricted if (2 — 1) is even, and the core is relaxed (i.e. the body is
restricted) if 3 (i — 1) is odd.

If ¢ is even, the body diagonals are odd. By Lemma 4.5, there are 2k - 1 body diag-
onals. Again, since there must be an even number of pairs of queens on odd diagonals,
the body is restricted if k - 3¢ is even, and the body is refaxed (i.e. the core s restricted)
if k — 17 is odd. 0

4.5 Results for 180°-symmetric dominating sets

The algorithm for finding symmetric dominating sets is the same as for asymmetric
sets, except that only half the queens need to be considered and there are restrictions
on the values of & and ¢, as seen in the theorems above, Table 4.3 shows values of &
for which minimum dominating sets were found that were not found while searching
for asymmetric dominating sets. None of these sets are independent, or cover a bigger

board (f.e. two or more extra edges).
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We now give a list of coordinates of queens for the cases & = 15,17 and 19, con-
firming the results in Tables 3.2 and 4.3. Note that the sets found for Qg and Q4
determine the new domination numbers v (Qay) = 35 and v (Q7y) = 39. Since the
dominating sets are symmetric, we give only the corresponding #-coordinates of the

z-coordinates (0,1,2,... k).
Qer. (0,-3,-11,1, 15, 12, -13, 8, 5, 14, -7, -10, -4, -2, -9, 6).

Qﬁg' (On 3) 153 ”11 103 165 133 33 17@ 143 7) _43 '9: "129 *"57 “23 —]12 '6)

7. (0,-3,17,14,2,-1,19, 16,-9, 12, 5, 18, -15, -6, 13, -8, -11, -4, -7, -10)

4.6 90°-symmetric dominating sets

We now consider 90°-symmetnc sets, that is, placements of queens that are invariant

under a 90° rotation (say anti-clockwise} of the board.

Lemma 4.10 I/ D is a 90°-symmetric (i,1)-dominating set, then k is even.

Proof. There are 2k + 1 queensin D. There is one queen on (0,0), and the remaining

2k queens must be a multiple of four. Therefore £ must be even. m

Lemma 4.11 If D is a 90°-symmetric dominating set, then (queen on (0,0) ex-
cluded):

(a) The number of odd-odd queens equals the number of even-even gueens and is
a multiple of four:

(b) The number of even-odd queens equals the number of odd-even queens and is

2Ven.,

Proof. Because D is 90°-symmetric, each gueen (except (0,0)) has three other cor-

responding yueens, ie. if there is a queen on {r,¥), there must also be queens on
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(—z,—y), (—y,z) and {y, ~z). Thus it follows that the number of even-even and
odd-odd queens is a multiple of four. Also, the number of even-odd queens equals the
number of odd-even queens. Consider all the coordinates ((0,0) excluded) of 1. If k is
even we notice that the number of even x, odd z, even 4 and odd ¥ coordinates are ail
equal (to £). Thus if the number of even-odd queens equals the number of odd-even

queens, the number of even-even and odd-odd queens must also be the same. O

Lemma 4.12 I/ 1D is a 90°-symmetric dominating sef, then (queen on (0,0) ex-
cluded ) the number of even queens is a multiple of eight and the number of odd gucens

is a multiple of four

Proof. The result follows directly from Lemma 4.11. 0

Lemma 4.13 If D is a 90°-symmetric dominating sel, then fble 4.4 sums up the
possible values of k for different values of i, and states whether the body or core is

refmeed

| i | &k Jrelax |
Bm—3 | dn 42| body
8m - 2 | not possible
Em ~ 1 4n core
Bm 2n core
8m -1 4n body
8m+ 2 2n | body
gm+314n+2 | core
m +4 | notpossible

Table 4.4 Values for k for different ¢

Proof. i even: If ¢ is even, then there are ¢ — 2 even s (d)-diagonals (0-diagonal
excluded) in the core and 2k — 4 s (d)-diagonals in the body (Lemma 4.5). Either the
core or the body must be relaxed (LLemma 4.6). If we relax the core there are ¢ queens

in the core ((0,0) queen excluded) and 2k — ¢ queens in the body. By Lemma 4.12, ¢
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a,b)

Figure 4.6 The black dots dominate the same squares as the white dots

must be a multiple of eight, and 2k — 7 a multiple of four, proving the case i = 8m. If
we relax the body, ¢ — 2 must be a multiple of eight and 2k — i 4+ 2 a multiple of four,

proving the case ¢ = 8m + 2. All other even values of i are impossible.

i odd. Fori odd there are i — 1 odd s (d)-diagonals in the core and 2k —i — 1 even
s (d)-diagonals in the body (0-diagonal excluded). If we relax the core, ¢ + 1 must be
a multiple of four and 2k — (i + 1) a multiple of eight. There are two possibilities: (1)
If 2 + 1 = 8m, then k£ must be a multiple of four, proving the case i = 8m — 1. (2)
If i + 1 = 8m + 4, then 2k — 8m + 4 must be a multiple of eight, i.e. & = 4n + 2,
proving the case i = 8m + 3. Similarly, if we relax the body, i — 1 must be a multiple
of four and 2k — (¢ — 1) a multiple of eight. Again there are two possibilities, namely
t—1=8mandi—1=28m— 4 giving k = 4n and k = 4n + 2 respectively, which

prove the cases i = 8n — 1 and i = 8m — 3. O

From Figure 4.6 we see that a set of four queens which is 90°-symmetric can be placed

in two different ways and still dominate the same squares. Therefore, we only need
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to consider one eighth of the board, because if we, for example, consider the positive
quadrant we can always choose the queens so that the z-coordinates are bigger than

the y-coordinates in the positive quadrant.

4.7 Results for 90°-symmetric dominating sets

Unfortunately, we were unable to find such dominating sets. It may be possible to find

solutions for larger values of n. by using faster computers.
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Domination on ()43

The only values known for n up to now for which ¥(Q,) = i(n — 1) are 3 and 11.

2
Theorem 2.2 by Weakley describes some properties of such sets. Firstly, n =3 (mod 4).
Thus we only have to search for sets satisfying v(Qux43) = 2k + 1. In this chapter we
try to determine whether there exist more such dominating sets. We begin by showing
y (Q4k+3) > 2k + 1for3d <k < 7. We then consider sets that dominate only the edge.
Finally, we introduce the concept of the radius of a queen to study the distribution of
dominating sets.

Another property of the concerned dominating sets proved in Theorem 2.2 is that
there exists a j x j sub-board U for some odd integer j (3(n 4+ 1) < j < n) so that
each edge square of UU is dominated exactly once. Thus for each board we consider
the possible j x j sub-boards separately. In order to reduce c.omputer time, we will
first determine on which sets of rows (columns) dominating sets could possibly be
found. Place the board on the x-y-plane with the centre of the 7 x j sub-board at the
coordinates (0,0). As before we will refer to the board squares by the coordinates of
their centres. Notice that the centre of the § x ;7 sub-board and the centre of the entire
board do not have to be the same square. Let = (7 — 1); then the edge squares of
the sub-board are on squares with their « or ¥ coordinates equal to I. The following

lemmas and theorems concern rows and columns intersecting the j x 7 sub-board.
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B4

(a.D)

Figure 5,1 If z = a is empty, then y = a or y = —a is also empty.

Thus for all @ and b mentioned, —! + 1 < a,b < { — 1. Also, when we refer to a set
S, we mean a set of queens with cardinality 2k + 1 on Q4 1, & > 3, which dominates
the edge of the § x j sub-board (j = 2! +1).

Lemma 5.1 Foraset S, if © = a (respectively y = a) is empty, then y = a or

y = —~a (respectively z = a or x = —a) must also be empiy

Proof. Supposey = a and y = —a are both occupied. Thend = —I — a and

&8 = —[ + ¢ must be empty (see Figure 5.1). But then (a, —{) is not dominated. Thus

Yy = a ory = —a must be empty. ' O
Lemma 5.2 Foraset S, if © = ais occupied, then y = a or y = —a is also
occupied.

Proof. Suppose ¥y = a and ¥ = —a are both empty. Because z = a 18 occupied both

3= o+ !and d = ! — a must be empty (see Figure 5.2). This meansd = a — ! and
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Figure 5.2 If © = a is occupied, then y = a or y = —a is also occupied.
8 == —a — [ must be occupied. But then (&, —{) is dominated twice. Thus i = a or
y = — 15 occupied. ]

Lemma 5.3 Foraset S, if = taisoccupied, then y = ta is occupied,

Proof. Suppose & = +a is occupied and, without loss of generality, ¥ = a is empty.
Butify = a is empty, then from Lemma 5.1 £ == a or & = —a must be empty. This is

a contradiction, thus ¥ = +a must be occupied.. O

Lemma 5.4 Iffor aset S, the set of rows is symmetric, then the sef of columns is the

same as the rows.

Proof. Because there are just as many rows containing queens as columns containing

queens, we only have to show that for each x = =+a that is occupied, ¥ = +a is also
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N
L1 AN
a b
Figure 5.3 (22,1 — 2%} and (%£2, —1 4 %2) must be dominated by row or column.
occupied. This follows directly from Lemma 5.3, thus the lemma is proved. O

Theorem 3.5 [fforaset S, x = a and x = b are occupied, with a < band a + b
even, then if

(1) =22 isempry and

(2) a::l—b’T“or:z:m—l+b;;isempt};
then S is not dominating.

Proof. If ¢ = a and = = b are occupied, then the squares (22,7 —2:2) and (%2, —1 +

22} must be dominated by row or column (see Figure 5.3). Ifz = [ — bt or g =
-1+ 519 are empty, then from Lemma 5.1y =1 — ﬂ ory=—l+ "”—“ is also empty.
Thus if & = 2+ isempty and ¢ = [ — 2% or v = —I + %2 are empty, (252, [ — 22¢)

and (&2, —I + %%} can not be dominated. m
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Figure 5.4 (—2t | — 228y and (—21 —7 + £22) must be dominated by row or col-
umn.
Theorem 5.6 [ffor asef S, x = aand x = b are occupied, with a < b and a+ b
ever, then if:

(1) T = —aorz = —bisoccupied and

(2) z=-2Lisempry and

() z=—I+52orz=1—52isempty

then S is not dominating.

Proof. Suppose there are queens on z = a,z = b and, without [oss of generality,
z = —a. Then s = -l —aand d = I + a are empty (see Figure 5.4). Because 7 = b

is occupied, ¥ = bor y = —& must be occupied (Lemma 5.2). Thus d = [ + b
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7=31] 03568111314
0,3,4,6,7,10,13,14
0,2,5,7,9,11,12,14
0,2.4,6,8.10,12,14
0,1,5,6,7,11,12,13
0,1,4.5,8.9,12,13
0,1,2.89.10,11,12
0,1,2,3,4,5,6,7
7=29| 03.69,10,12,13
0,2,4.6.9,11,13
0,2,3,5,8,10,13
J=97 [ 03.6911.12
0.2,5.7,9,12
0,3.4.7.8.11
=125 0.2,49.11
03,5,8,11
03,4,7,10

Table 5.1 Possible rows containing queens for different subboards of Qs

or 5 = | — b must be empty. This means (—23%,1 — %52) or (-4, —1 + %) is

not dominated by diagonal, but by row or column. Thus if z = —%t2 is empty and

z = ~f + 22 or & = | — 2% is empty, the set can not be dominating, O

By using the above theorems, we can use a computer to find permissible sets of rows
for dominating sets. For a specific board we run a different programme for each per-
missible sub-board {Theorem 2.2). The algorithm simply generates all possible sets
of rows and eliminates sets that cannot be dominating sets according to Theorems 5.5
and 5.6. As expected, the row pattern with queens in every second row and column
was found when 4 = m. As an example, Table 5.1 shows the possible sets of rows
(columns) for different sub-boards for {J3;. In this case the'Sefs are symmetric, thus
we only give the non-negative rows {columns).

For those sets that are symmetric, it follows from Lemma 5 4 that the set of columns
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1s the same as the rows. The following observation eliminates even more sets of rows
(columns): Consider a queen directly outside the j x 7 sub-board. It dominates three
consecutive edge squares. The middle one by row (column) and the other two diago-
nally. Thus if 7 < 7, then there must exist at least two rows and columns with queens
on them, but with no queens on the rows(columns) directly next to them. Similar elim~
inations can be made by considering queens inside the sub-board.

If we know all the rows (columns), it reduces the time for the computer search for
dominating sets considerably, especially because we also know which edge squares
of the sub-board must be dominated diagonally. Thus for each occupied row, there
are only a few possible positions for a queen. Programme 3 in Appendix B is an
example programme for the case n = 31 and sub-board j = 29 (with the sub-board
placed in the centre) for a specific row pattem. Note that it must also be taken into
account that the sub-board can be off-centre. The algorithm considers ali possible
placements of queens (on permissible rows and columns) on the board by first finding
placements of the queens outside the sub-board (if any) and then the queens inside. It
then eliminates sets that dominate some edge square of the sub-board more than once as
soon as possible. (Such sets cannot be dominating, because by Theorem 2.2, each edge
square of the sub-board must be dominated exactly once.} If a set that dominates the
edge of the sub-board is found, it can easily be checked whether it also dominates the
rest of the board. As expected, the algorithm found all the so-calied “edge dominating
sets” with queens in every second row and column, where 2 < k < 6, discussed later
in this chapter (see Table 5.2).

We only checked boards up to n = 31, 'and found no dominating sets. We can now

state the following.

Theorem 5.7 For 3 < k <7, ¥((Qaxys) > 2k + 1. O
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B |2k+114k+3 | noofsets | 2> R
1 3 7 none

2 3 11 1 8
3 7 15 1 16
4 9 19 none

5 11 23 2 40
6 13 27 40 56
7 15 31 none

8 17 35 90 96
9 19 39 272 120
10 21 43 none

11 23 47 3728 176
121 25 | 51 many 208

Table 5.2  Number of edge dominating sets found and their £ 3~ R
Theorem 5.8 (o) = 10 and v((Q3;) = 16.

Proof. From Theorem 5.7 v((}19) > 9 and y(()31) > 15. From Chapters 3 and 4
we have y(€5) = 9 and y({3p) = 15. Thus adding a queen to these sets we obtain

dominating sets for (}15 and (J)3,, which proves the theorem. O

For both n = 3 and n = 11 we have j = n, i.e. no queens on the edge of the board.
We suspect this is true for all cases where ¥{(Jy:13) = 2k + 1, because a queen on
the edge dominates fewer squares than one closer to the centre. We therefore state the

following conjecture:

Conjecture 1: If v(QJuri3) = 2k + 1, then the edge is empiy.

We will restrict our search to dominating sets with no queens on the edge and each
edge square dominated once. We define an edge dominating set as a set of queens that

dominates each edge square exactly once (not necessarily dominating the rest of the

board). Note that an edge dominating set on €43 bas 2k 4+ 1 queens and that none of
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Figure 5.5 Colouring of the edge squares

these queens can be on the edge, since such a queen will cause several edge squares to
be dominated more than once.

We searched for edge dominating sets by computer and found several such sets. (See
Table 5.2). However, we did not find any such sets when the number of queens is a

multiple of three, which leads to our next conjecture:
Conjecture 2: There are no edge dominating sets if 2k + 1 (the rumber of queens) is

a multiple of three.

If the above two conjectures are true then the lower bound for 4(@4x43) can be im-
proved for the cases where 2k + 1 is a multiple of 3. We now prove why there cannot

be edge dominating sets for some of the cases.
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Theorem 5.9 Consider a set of 2k + 1 queens on Qup4s with 2k + 1 a multiple of
three. Then if 2k 4 1 is not a multiple of nine, the set cannot be edge dominating.

Proof. Colour the edge squares with 1, 2 and 3 repeatedly so that every third square is
the same colour, starting with 1 in a corner (see Figure 5.5). Edge squares on the same
diagonal, row or column are either both coloured 1 or coloured differently, namely 2
and 3. From Figure 5.5 we see that a queen can dominate two possible combinations of
colours on the edge: Firstly, queens with both coordinates a multipie of three (indicated
by dots in the figure) dominate only edge squares of colour 1 {eight squares in total).
Secondly, queens on all other squares dominate two squares of colour 1, three of colour
2 and three of colour 3. There are 8(2k+1) /3 edge squares of each colour. To dominate
the right number of colours 2 and 3 there must be 8(2k + 1)/9 queens of the second
type. This is only possible if 2k + 1 13 a multiple of 9. a

Corollary 5.10 If Quuia has an edge dominating sef and 2k + 1 is a multiple of
nine, then there are exactly (2k + 1) /9 queens on squares with both their coordinates

a multiple of three. u
We can now give an alternative proof to the one by Weakley [17] for ¥{Q+) = 4
Theorem 5.11 ~(Q7) = 4.

Proof, Placements establishing v(@7) < 4 can be found in Appendix A. By Theo-.
rem 2.1 it thus suffices to show (¢)7) # 3. Suppose that there exists a dominating set
R of 3 queens on J;. The only odd value of 7 satisfying the inequality in the statement

of Theorem 2.2 is 7 = 7. Thus Jt must be an edge dominating set, but by Theorem 5.9

such a set does not exist, so we have shown y(Q+) # 3. O

To study the distribution of queens in {edge) dominating sets we define the following:
The radius R of a queen 1s j if the queen lies on the edge of a 7 x 7 sub-board with
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the centre square on (0,0). Note that the radius of a queen with coordinates (i, 7)
equals the maximum of |i] and |5]. On the simplified board we will refer to R, so
that we can use the coordinates of the simplified board directly. For a set of queens
we can determine the sum of all the radii. We will denote this sum by 5 R. Again,
we will refer to § 5~ 1 on the simplified board. We determined «% 3" R for all the edge
dominating sets of (24x4.2 we found with queens in every second rew and column (from

k = 8 only symmetric sets) and found for all of them (up to & = 11) that:
“E:R 4kk+n
We now state the following conjecture:

Conjecture 3: For an edge dominating set of Q3 with queens on every second row
and column we have (on the simplified board ).

1 ak{k + 1)
SN R=E T
A=

Note that if the above conjecture is true it would also explain why for every third &
there is no edge dominating set, because ) 5 must be an integer

We now look at edge dominating sets that also dominate the whole board, and if we
assume Conjectures 1 and 2 are true, we can determine for which k it might be possible
to find sets that satisfy 7(Q4x4a) = 2k + 1. Henceforth, when we refer to a dominating
set D of Q4,42 we assume that, unless stated otherwise, [D| = 2k + 1 and that there is
one queen on cach even row and each even column. An (Z,7)- or (i,7 + 2)-dominating
set £ an Q45 5 is the same as a dominating set on (7 4., with an extra edge that is also
dominated. We can therefore use the results in Chapter 4. The following two theorems

were first proved in [3]

42



Chapter 5 Domination on (J 443

s=0 §=1 s=2k-i+1

(1~k~1,kJM(i/-k,k+1)

Figure 5.6 There are no (%, 7 + 2)-dominating sets on Quk+3.
Theorem 5,12 There are no (i1 + 2)~dominating sets on Qux .
Proof. If D is an (4,4 4+ 2)-dominating set, then by Theorem 4.2 there are queens on

d=0,+1,42,. .. 4 i+ 1), (G +3), £ +5),..., £k —i — 1),

s=0,%1,32 ., +(i—1), (i +1),£(43),..., £k —i—3)

with no queens on any other d-diagonal. There are no queens on at least one of s = 7
and s = —i. Without loss of generality say & = ¢ is empty. Thus the squares on s = 4
on the edge must be dominated by a queen on a d-diagonal. This diagonal must be
d = 2k — i + 1 (see Figure 5.6). But there is no queen on d = 2k — i + 1. Therefore

the edge is not dominated. 0
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Theorem 5.13 An (i,9)-dominating set on (Quc.5 must have exactly one gqueen on

each of
s(d) =0,+1,£2, ..., £t —1),xE+1),...,£(2k —4— 1), £(2k —i + 1), (5.1)

with no queens on any other diagonal,

Proof. By Theorem 4.2 there must be queens on each of
s(d) = 0,%£1,£2,..., £ —1), (G +1),..., 22k -7 1), (5.2)

It is easy to verify that the only squares on the border that are not dominated by (5.2),
are the squares on s,d = . As in the proof of Theorem 5.12 these squares must be
dominated by queens on 3,4 = (2k—1+1). Thus there must be queens on the 2k +1

diagonals listed in (5.1). Hence there are no queens on any of the other diagonals. O

Note that for a dominating set D on €443 both the core and the body are restricted,
and that the number of body diagonals is two more than in the case of (451, namely
2k — 1 + 2. Most of the lemmas and theorems in Chapter 4 can be adapted for domi-
nating sets on {41, 3. Also, the same techniques can be used to search for dominating
sets satisfying (43} = 2k + 1. However, no new sets could be found. We now
investigate further why there are so few of these sets.

Let ¢; be the number of squares on the simplified board dominated diagonally (F.e.
all the odd-odd squares on the normal board) by the queen on (z;,%:), and 3 R; the
radius of the queen on (z;, y:).

Lemma5.14 ¢ =4(k +1) - 2(3R.).

Proof. It is easy to see that queens with the same radius dominate the same number
of squares. The centre square dominates 4(k + 1) queens and if the radius increase by

one, the number of squares dominated decreases by two. o
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Lemma 5,15 If D is a dominating set on Qug3, then
> e =4k + 1)k +14) — 2i(i — 1).
Proof. By Theorem 5.13 there is one queen on each of the following diagonals:
sfd=2x0,1,2,...,i—1,i+1,...,2k —i+1

Diagonal s = I{d = [} consists of 2k + 2 — |!] squares on the simplified board. Thus
we can determine the total number of squares covered by the diagonals (squares that

are covered twice are counted twice):

S o= 22k +2)+2[(2k+1) + (2) + ...
+(2k+3 -9+ (2k+1—4) +...+(1+14)]
= 202k +2+2(i— D@k +4—4)/2+ (2k + 2)(k — 1+ 1)/2]]
= 2[(2k+2)+ 4k +4—-D(i - 1)+ (2k+2)(k—i+1)]
= 4(k+1)(k +4) — 2i(i — 1).

Theorem 5.16 If D is an (i,1)-dominating set on Qurya, then
1 : .
521—2: 2k + 1)k +1—4)+14(i —1).

Proof. By Lemma 5.14, 2 R; = 2(k + 1) — Jc;. Thus we have

%ZR = fyXZ(k—l—l)—-%Zci
= 22+ 1)(k+1) — 2k + 1)(k +14) +i(i — 1)

= 2k+1(k+1—49)+i(éi—1).

O

If we assume Conjectures 1 and 3 are true, we have calculated % 3" R for a dominating
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set D for Q4.3 1n two different ways, We thus have:

ak(k + 1)
3

The first few integer solutions (k > 0) for this equation are listed in Table 5.3.

=2k + Dk +1—3) +i(s — 1), (5.3)

{ k 1
0 lor2
2 Zors
9 S5orls
35 1 1l6or 57
132 | 37 0r 210

Table 5.3: Infeger solutions for equation (5.3)

The smaller value of ¢ is in gach case the valid one. The first two solutions correspond
with (13 and ¢}y, for which dominating sets of cardinality 2k 41 are known. No (5,5)-
dominating set [ could be found for & = 9. We note, however, that for both known

dominating sets, k is even.
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Upper bounds for the domina-

tion number of (),

In this chapter we give an upper bound for v((J,,) by constructing dominating sets for
certain values of .

As stated in the proof of Theorem 2.1, it is obvious that -y((,,) is bounded above by
n~2. Asin the case of the lower bounds, no non-trivial upper bounds were known until
quite recently, It was proved in [4] thatif n = 108m — 37, then v(Q,,) < 62m — 23 =
1y - 8 With the lower bound v(Q,,) > 1n 4 O(1), this leaves a gap of £n + O(1)
between the lower and upper bound. We are now able to narrow this gap by more than
half to 2 by showing thatif n = 60m — 11, then ¥(Q,) < 32m — 6 = Sn — .

Note that there are restrictions on n, but the set of admissible values for n is an
arithmetic progression. For all other values of n, we can create a dominating set by
adding queens to a dominating set on a largest admissible board of size less than 7.
At most one queen is needed for each new row and column. Therefore, the number of
added queens is never more than a constant. This will show that (2.} < f:n+ O(1).
Note that the pattern formed by the queens to obtain this bound is different from the

so-called Z-pattern used in [4] and [12].
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Chapter 6 Upper bounds for the domination number of @y,

We begin with the follwing resuit which is easily seen to be true (refer to Figure 4.3)
and which is therefore stated without proof.

Lemma 6.1 ffan s-diagonal s = { = Qintersects arow y = por acolumn © = g,
then any s-diagonal s = U with 0 <U <[ intersects allrows y = ¢/ with ¢ > pand
all columns © = ¢ with ¢ > q. A symmetric statement holds for negative s-diagonals

and similar results are true for d-diagonals.

Theorem 6.2 For each positive integer m, 7(Qgom-11) = 32 — 6.

Proof. We will give a set of queens on Q4 ;, with at least one queen in every second

row and column and at least one queen on each of the diagonals
s(d) =0,+1,42,... (G- 1), k(i +1),...,£2k -4 ~ 1),

with i = 6m — 1, k = 15m — 3 and m any positive integer. According to Theorem 4.2
this will be a dominating set.

The dominating set consists mainly of five groups of queens plus a few more to
cover the remaining empty rows, columns and diagonals. See Figures 6.1 and 6.2 for
the casestn = 2and m = 3.

Again, we use the simplified version of the board. The core queens are the odd

queens and their coordinates are given by
(1,4 —3) + 5(1,~3) and (=1, ~i + 3) + 5(~1,3) for j = 0,1,...,3m— 2.
These queens are on the diagonals
s(d)y=—i+2~i+4,...,-1,1,3,...,i—2 (6.1)

which cover all the required consecutive odd diagonals.
The body consists of four groups of queens, two of which are exact copies of the

core. If we regard (0,0) as the centre of the core queens, then the centres of the exact
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Figure 6.1 m =2 {7(Q100) < 38)
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Figure 6,2 m=23
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copies are at (2¢,) and (—2i, —3). First, consider the copy with centre (2i,1). Because
it is a copy of the core, it will also cover consecutive diagonals (of the same parity).
We can therefore determine the s- and d-diagonals of the copy by adding ¢ + 2i and
t — 2i to (6.1) respectively. This gives:

s = 24+2,2%+4,...,3%—1,3(+1,3+3,...,4—2 (6.2)
d = —2+2,—2+4,...,—i—1,—+1,—i+3,...,-2 (6.3)

Similarly, the copy with centre (—2i, —i) has queens on the diagonals

§ = —di4+2,—4i+4,... —3—1,-3i+1,-3i+3,...,-2—2 (64)
d = 2,4,...,i—14+1,4+3,...,2 2 (6.5)

The other two groups of queens are also copies of the core with the only difference that
if m > 2, then some of the queens do not fit on the board, and these, of course, cannot
be part of the dominating set. The centres of the groups are at (¢, —2¢) and (~1, 23).

These queens (including those that do not fit on the board) are on the even diagonals

§ = —2+2,2+4,...,-2 (6.6)
s = 2.4,...,2—2 6.7)
d = —4i+2 —4i+4,...,—2—2 (6.8)
d = 2+22+4,... %2 (6.9)

We see that the diagonals listed from (6.2) to (6.9) are all the even diagonals from
s{d) = ~4i+2=—(2k —i—1)tos(d) = 4 — 2 = 2k — i — 1 except 5(d) = 0 and
s(d) = +2i. o

We have to consider the queens that do not fit on the board, because they are on the
extensions of empty diagonals which therefore must be covered in some other way.

These queens have y-coordinates bigger than k = 15m — 3 or smaller than —&. Their
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coordinates are
(—2,20)+ (1,1 — 3) + 7(1,-3) forj=0,1,...,.m—2
and (¢, —2i)+ (-1, -1 +3) +j(=1,+3) forj=0,1,...,m -2,
which are the same as (remember ¢ = 6m — 1)
(—6m + 2,18m — 6), (~6m + 3,18m — 9),..., (~bm, 156m)
and (6m ~ 2,—18m + 6),(6m — 3, ~18m +9),..., (5m, ~15m).
These queens are on the diagonals:
§=+(2~ 2),+(2¢ ~4),... m— lterms
and d = +(41 —4), +(4i—8),... m— 1terms

To summarise, the following lines (corresponding to columns, rows and diagonals) are

empty at this stage:
z = 0,%1,+£2 and = +(i - 1),£(i — 2),... m—1terms
y = 0,+i,+2% and y= +(k—2),+(k—5),... m—1terms
d = 0,£2%  and d = +(4i — 4), +(4i — 8),... m — 1 terms
s = 0,20  and s=4(2 ~ 2), £(2¢ — 4),.. m — 1 terms.

Thus we have 2m + 3 empty rows and columns each and 2m + 1 empty s- and d-

diagonals each. These lines can be covered by the following procedure:

1. Place queens on (0,0), (¢,1) and (—¢, —i). This covers the columns x (rows y) =
(), +i, s-diagonals s = 0, +2i and d-diagonal 4 = 0, leaving 2m empty rows, columns

and d-diagonals and 2m — 2 empty s-diagonals.

2. Place a queen on each of 2m — 1 intersections of an empty row and an empty

d-diagonal, leaving one empty row and d-diagonal, say d = 2:.
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3. Placeaqueen on each of the 2m—2 intersections of an empty column and an empty
s-diagonal, leaving two empty columns, one of whichis z = —i+1 = —6m + 2, say,

and no empty s-diagonals.

4. Place a queen on the intersection of the empty column z = —6m + 2 and the
remaining empty d-diagonal d = 2i = 12m — 2, i.e. on the square with coordinates
(—6m + 2,6m).

5. Place a queen on the intersection of the remaining empty row and column.

Steps 2 -5 can be executed in a number of ways. Step 2 is always possible since even
the shortest positive (negative, respectively) empty d-diagonal d = 4¢ — 4 = 24m — 8
(d = —4i + 4 = —24mn + B, respectively) intersects all the empty rows in the upper
(lower) half of the board. This follows from Lemma 6.1 since d = 24m — 8 intersects
the empty row i = 12m + 1 closest to the centre in the upper half of the board in the
point (12m ~ 9,12m + 1). A symmetric statement holds for the negative d-diagonals.
Similarly, Step 3 is always possible by Lemma 6.1 since the shortest empty positive
(negative) s-diagonal s = 12m — 4 (s = —12m + 4) intersects the empty column
z = bm {z = —5m) in the upper (lower) half of the board closest to the centre (if
m 2> 2) in the point (5m, T — 4) (respectively (—5m, —7m + 4)). The coordinates
of the queens in Steps 4 and 5 depend of course on the placements in Steps 2 and 3;
the coordinates chosen to execute Step 4 only serve to illustrate that Step 4 15 possible,
and Step 5 is trivially possible in all cases.

We need 4m + 2 queens for this procedure. The five copies (minus the few not on
the board) require 5(6m — 2) — 2(m — 1) queens, giving a total number of 32m — 6

queens. I

Remark: In some cases it is possible to improve on the above procedure, because if

more than two empty lines cross at one point we need fewer queens to cover those
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lines. For example, if m = 3 we can use one fewer queen by placing queens on
(0,0), £(34,0),£(15,17), £(16, 14), £ (26, —34), £(27, ~37), £(17, 40}.

The same technique with core patterns that result in more empty lines crossing at the

same point would permit us to improve the upper bound even more.
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Domination on hexagonal boards

In this chapter we determine values for -y and 7 for hexagonal boards, and show that
there are only two types of dominating sets for certain boards. We consider a hexagonal
board (hive) consisting of hexagonal cells (see Figure 7.1). Note that domination by
queens on a square beehive was studied by Theron and Geldenhuys in [16] .

We define a queen on the hexagonal board as a piece that moves along three lines,
namely along the cells in the same row, up diagonal or down diagonal. A queen dom-
inates a cell if the cell is in the same line as the queen. The problem is to determine
the minimum number of queens necessary to dominate all the cells on the board. The
edge consists of all the cells on the edge of the hive. A cell or a line is empty if there
1s no queen on the cell or line. A cell is oper if it is not dominated.

Again, this can also be considered as a graph domination problem in the following
way: The hexagonal queens graph H,, has the cells of a board with n rows and diago-
nals as its vertices. Two vertices are adjacent if the two corresponding cells are in the
same row or diagonal. A set IJ of vertices (cells) is a dominating set of H,, if every
cell of H,, is either in [) or adjacent to a vertex in . If no two cells of a set [ are adja-
cent then [ is an independent set. Let y( H,,) denote the minimum size of a dominating
set of H,, and let ¢(H,,) denote the minimum size of an independent dominating set of
(2. Note that for any n, y(H,) < i(H,).
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Figure 7.1 A dominating set for Hq

We will only consider hives with a centre cell, i.e. hives with an odd number of rows
and diagonals. Thus we will determine values for y(H,,) and ¢(H..) (» odd) and show
that there are only two types of dominating sets for Hyz43. The lines are labelled as
shown in Figure 7.2.

Each cell has three coordinates, namely row (r), up diagonal () and down diagonal

(d) which we will denote as (r, u,d). We note the following:
Remark 7.1 Forallcellswe haver + u+d =0

Remark 7.2 A line with a negative (positive) label intersects an edge line with a
positive (negative) label.

We will now describe a dominating set of queens on Hyx3 which was first discov-

ered by Burger and Theron [15] . The placement consists of two columns with k£ + 1
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Figure 7.2 Numbering of rows and diagonals

and & queens respectively. Figure 7.1 shows the case k == 2. In general, the coordi-
nates for & > 0 are given below, where the second set of coordinates is undefined {(and

to be ignored) when k = 0 (see Figure 7.3).
(20— k,~a,k—a)fora=0,1,... .k
and
(2a+1—k,k—a,~1—a)forea=0,1,...,k— 1.

We will refer to this placement as the Double Cofumn Placemernt (DCP ). We can see

57



Chapter 7 Domination on hexagonal boards

AViVA

Figure 7.3 Double Column Placement for Hy; 3

that each of the rows, up diagonals and down diagonals covered by a DCP has the
labels:

—k,—k+1,...,-1,0,1,... k—1,k.

Thus the 2k +1 lines closest to the centre are all covered. This is sufficient to dominate
the whole hive. Note that the queens form an independent set. Since the case k& == O is

trivial, we assume henceforth that k > 1. We state the following lemma without proof:

Lemma 7.1 Forall k > 1, y(Hagya) < 1(Hapes) < 2k + 1.

We define aring as a six-sided convex polygon formed by the union of six lines, where

each line consists of at least two cells. The edge is an example of a ring. The edge can
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Figure 7.4 Biggest empty ring

be made smaller by replacing one line of the ring with aline closer to the centre, as long
as the ring has six sides. For any set of queens on a hive we define the Biggest Emp1y
Ring (BER), if it exists, as the ring formed by the edge lines, if they are unoccupied, or
by replacing each of the occupied edge lines with the empty parallel line closest to the
edge line concerned (see Figure 7.4). Let the distance aline is replaced be the number
of lines outside that side of the BER. Let § be the sum of all the distances each side is
replaced. Note that § equals the number of cells in the edge thinus the number of cells
in the BER, because if a line of the ring is replaced by a line just closer to the centre,

the number of cells in the ring decreases by one. We now have the following lemma:
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Lemma 7.2 Forall k > 1, if Hyxy has 2k or fewer queens, then the BER exists,

Proof. We only have to verify that the BER always has six:si‘dés. If a line of any Ang is
replaced by a line just closer to the centre, the number of cells in two lines of the ring
decreases by one. When constructing the BER, each queen outside the BER caused
either one or two such replacements {depending on whether the queen is at a "comer”
or not). It is easy to see that each queen outside the BER caused the number of cells
in any side to decrease by at most one. There are 2k 4 2 cells in each edge line. Thus

if there are 2k queens, each side of the BER must have at least two cells. O

Let ¢ be the total number of times the BER is dominated by all the queens. Thus if
one BER cell is covered m times, it must be counted m times. Let ¢ be the number of

queens on the board. We then have the following lemma:

Lemma 7.3 If the BER exists for a set of g queens on Hyy s, then ¢ < 8g — 26,

Proof. There are two types of queens outside the BER (see Figure 7.4):

(1) The queens that lie on the outside of only one line of the BER.. Each of them covers
four celis of the BER.

(2) Queens that lie on the outside of two lines of the BER. Each of them covers two
cells of the BER. Let there be by and by queens of each type respectively. It is easy to

see that
§ < by + 2bs,
with equality when the queens are independent. Now:
c = 6(g—b —by)+4b + 2by
= 6g -~ 2by — dby
= 6 — 2(by + 2bs)
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< bBg— 26.

Again, equality holds when the queens are independent. O

Lemma 7.4 If ¥v(Hopi1) = n, then
(a) the BER is the edge.

(b) each edge cell is covered exactly once.

Proof. From Lemma 7.3 we have ¢ < 6n — 26. Also |[BER| = 6n — é. For the BER

to be dominated we must have ¢ > [BER|. Thus
bn—6<e<bn—20
or
b<c+2—6m<Q.

Therefore § = 0. Thus the BER must be the edge. To prove (b) we note that there are
6n edge cells and each of the n queens can cover six edge cells. Therefore each edge

cell must be dominated exactly once. O

The proofs of the following two results, first proved in [15] , now follow easily:

Theorem 7.5 Forall k = 0, ‘i(H4k+3) = 7(H4k_,.'3) = 2k 4+ 1.

Proof. As noted before we need only consider the case & > 1. We first show that
v(Haxs3) > 2k + 1. Consider any set of 2k queens. There are 6(2k + 1) — & cells
in the BER. But by Lemma 7.3, ¢ < 6(2k) — 26. Thus we have ¢ < 6(2k) — 2§ <
6(2k + 1) — § = |BER)|. Therefore the BER cannot be dominated. The result now

follows from Lemma 7.1. O

Theorem 7.6 Forall k > D, i(H4k+1) = 7(H4k+1) =2k+ 1.

Proof. Hyy 11 is Hygqs with the edge removed. Therefore the Double Column Place-

ment also dominates Hy,11, which establishes y(Hy11) < i(Huq1) < 28+ 1. To
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show that v{ Hax41) = 2k +1, k > 1, we show that 2k queens cannot dominate Hax 1.
Suppose we have a set of 2k queens dominating Hyy, ;. From Lemma 7.4(b) we see
that each cell on the edge is dominated exactly once. The corner cells can only be
dominated by a queen on a main diagonal. Consider any main diagonal. There must
be ane queen on it, and the remaining 2k — 1 queens are on the two sides. A queen in
a specific half dominates four cells of the edge in that half and two cells of the edge
in the other half. To dominate the same number of edge cells on the two sides, there
must be the same number of queens in the two halves. This is a contradiction, because

an odd number of queens remains. C

We will now show that there are only two types of minimum dominating sets for Hye.,q
for all £ > 1. From Lemma 7.4 we see that any dominating set of Hy,. 3 consisting
of 2k + 1 queens leaves the edge empty. We use the fact that each edge cetl must be

dominated exactly once to prove the following lemmas.

Lemma 7.7 If Hygya is dominated by 2k 1+ 1 queens, then lines with the same label

are either all occupied or all empty:

Proof. Each of the edge cells 15 dominated exactly once. Thu.s if the row r = a{e > 0)
is occupied (respectively empty), thend = 2k + 1 —~aand u = 2k + 1 — a are empty
{respectively occupied). Butthenuw =2k + 1~ (2k +1—a) = candd = a are
occupied (respectively empty). The arguments for the diagonals are the same. Also,
if a < 0, the arguments are similar (see Figure 7.5). The lines with label 0 must be

occupied, because the comer cells can only be dominated by these lines. O

From Lemma 7.7 we see that we do not have to distinguish between labels of rows and

labels of diagonals. Consequently, we will only refer to the set of labels:

L={-2-1~2k ..—2,~1,0,1,...,2k,2 + 1}
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{0, 2%- 1,2k + 1~ g} (2h + 1 -a-2k-1)

ARV

Figure 7.5 Lines with the same label are all occupied (empty)

This set can be partitioned into two disjoint sets: the set representing all the occupied
lines ((?) and the set representing all the empty lines (E).
Lemma 7.8 [f a €O, then

—a+2k+1€eFifa>10

—a—2k—-1ec FEifa <.

Proof. The edge lines are labelled 2k + 1 or —2k — 1. Suppose a € O. Then since
each edge cell is dominated exactly once, it follows from Remarks 7.1 and 7.2 that

—a+4+2k+1cEifa>0and —~a—-2k—-1ec Fifa< 0. O

Lemma?79 Ifabe Eand la+b| <2k + 1, then
(a) —a—-beO
h) a+b+2k+1€Fifa+b<0
(c) a+b-2%~-1€Fifat+b=>0
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Proof, If'lines a and b are empty and they intersect inside the edge, the third line going
through the intersection must be occupied. From Remark 7.1 this line must be ~a - b.

Statements (b) and (c) follow from (2) and Lemma 7 8. O

Lemma 7.10 [f 2a € E, then —a € O,

Proof. Suppose 2a € F and —¢ € E. Then from Lemma 79(a), ~2a+a = —a € 0.

This 1s a contradiction. Therefore —a & €, |
Lemma 7.11 If 1€ E, thenall odd elementsof Larein E.

Proof. If 1 € E, then from Lemma 7.9(c), 1 + 1 — 2k — 1 = 1 — 2k € E. If
1,1~ 2k € E, then from Lemma 7.9(b), 1 +1-2k+2k+1=3€ E. If1,3 € E,
then from Lemma 7.9(c), 1 + 3 — 2k — 1 = 3 — 2k € E..Continuing in this way, we
find the following elements in £:

1—2k 3,3~ 2,552k, . 2%k—3 -3 2%—1,-1
These are all the odd elements of L. m]

Theorem 7.12  7here are only two types of dominating sets of cardinality 2k + 1 for
His, k2 1

() O={~2%,~2k+2,..-202,..,2 — 2,2k}

® O={-k~k+1,.,-101,..k—1k}

Proof. Either1 € Forl € O, If1 € E, then from Lemma 7.11 we have (a). We must
show that (a) is dominating. A cell can only be open if three empty lines intersect in
that cell. All empiy lines have odd labels. Thus the sum of the coordinates of such a
cell would be odd. This is impaossible because the sum must be 0.

If 1 € O, then by Lemma 7.8 we have 2k € E. 1t follows from Lemma 7.10 that
—k € O, and then from Lemma 78that —k — 1 € E. lif2k € Fand —k —1 € F,
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k|4k+3| v | number
1 7 3 1

2 11 5 1

3 15 7 5

4 19 9 56

5 23 11 540

6 27 13 | 6996

Table 7.1 Number of dominating sets found

then it follows from Lemma 79(c)that -k —2 € E. I[f 2k € Fand —k — 2 € E, then

again from Lemma 7.9(c), —k — 3 € E. Continuing in this way, we find:
—k—-1,~k—-2~k—-3,..,,-2k+1,-2k€FE.
The whole argument can be repeated with —2k € E to get:
k+1,k+2,..%—12%¢cE.

Thus (b) follows, which is also dominating as explained in the case of a DCP O

We note that in Theorem 7.12 the labels in (a) are double the labels in (b). Thus if we
take the coordinates of a dominating set of type (b) and multiply it by two, we have the
coordinates of a dominating set of type (a). The reverse can also be done. We therefore
have a one-to-one correspondence between all the dominating sets of type (a) and (b).
Figure 7.6 shows a few examples.

We can construct minimum dominating sets using the dominating sets of smaller
boards. In Figure 7.7 a dominat'mg set of Hys is obtained by repeating the pattern of a
dominating set of Hy5. Note that only the central section of the board is shown.

Table 7.1 lists the number of dominating sets found by computer. We see that the
number of dominating sets is large for large boards. Dominating sets for Hyx 1 are

even more numerous, and they are not restricted to two types of minimum dominating
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Figure 7.6 Dominating sets of different types for H5
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Figure 7.8 Relation between hexagonal boards and chegsboards

sets.

In Figure 7.8 we see that the hexagenal domination problem is the same as the queen
dominating problem for chessboards with the queens’ domination restricted to three
lines (row, column and one diagenal) and with two corners of the board cut off. We
hope the dominating sets for hexagenal boards can help us to answer some questions

for chessboards.
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Chapter 8
Irredundance

In this chapter we determine the irredundance number for Hs, Il;, Qs and Qg. We
repeat some of the definitions of Chapter 1 here for convenience. The closed neigh-
bourhood N|[v] of the vertex v in a graph consists of v and the set of vertices adjacent to
v. We define the private neighbourhood of v € S as pn[v, S| = N{v] - N[S—{v}]. If
pnfv, S] # @ for some vertex v, then every vertex in pr[v, S] is called a private neigh-
bour of v. Note that a vertex can be its own private neighbour. We say that a set S
of vertices is irredundant if for every vertex v € S, v has at least one private neigh-
bour. Note that a minimal dominating set is also irredundant. An irredundant set S is
maximal irredundant if for every vertex u € V — 5, the set S U {u} is not irredun-
dant, which means that there exists at least one vertex w € S U {u} which does not
have a private neighbour. The minimum cardinality of a maximal irredundant set in a
graph G is called the irredundance number and is denoted by ir(G). If a vertex u is
added to a set .S and it destroys all the private neighbours of some vertex w in S (i.e.
pnfw, S| # 0 and pnjw, S U {u}] = 0), we call v a pn-destroyer . 1f u is added to a
set S and it has no private neighbours'we say u is pn-less. For a subset S of vertices
in a graph, we say a vertex v (or a cell or a square in the case of hexagonal boards or
chessboards) is gpen if it is not dominated by S.

It is well-known that ¢r < v < i. Up to now no cases of hexagonal or chessboards
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Chapter 8 Irredundance

are known for which ir < <. Before we look at hexagonal boards and chessboards

separately, we give the following lemmas:

Lemma 8.1 If S is a maximal irredundant set in G = (V, E), then all apen vertices

in (z must be pn-destroyers.

Proof. Because 5 is maximal irredundant any vertex v € V' - S must be a pn-destroyer
or pn-less. But an open vertex cannot be pn-less because it is its own pn. Thus open

vertices must be pn-destroyers. ]

Lemma 8.2 If 5 is a maeimal irredundant set in a graph G and |S| < i(G), then S

is not independent.

Proof. Suppose & is independent. Then it will be possible to add another independent
vertex v. Thus St {v} is irredundant because each vertex in SU {v} is its own private

neighbour, meaning S is not maximal irredundant, a

Lemma 8.3 [f 5 is a maximal irredundant set on a hexagonal board (chesshoard) B
such that |S| = ~(B) — 1, then there are ai leasi three open cells (squares).

Proof, If there are only two open cells (squares), a queen ¢an be added to cover these
two cells (squares). This will be a minimal dominating set, which is also irredundant,

meaning S is not maximal. O

8.1 Irredundance on hexagonal boards

Lemma 8.4 If ir (Hs) = 2, then:
(@) The number of pn-less cells is at most four
(b) Each queen has at least two private neighbours.
(¢) Each queen’s private neighbours can be destroyed from at most six cells.
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Figure 8.1 1fir(H;) = 2 then there are at most four pn-less cells.

Proof. (a) The pn-less cells are the unoccupied cells not in line with the apen cells,
There are at least three open cells (Lemma 8 3). Even if there are only two open cells,
it 18 easy to see that there are at most six squares fiot in line with them (see Figure 8.1),
This leaves at most four pn-less cells, because the two queens are also not in line with
the open cells.

(b) The two queens are adjacent (.emma 8.2). Each queen has at least two possible
cells per line that can be private neighbours. But the adjacent queen destroys at most
cne private neighbour per line. Thus there must be at least two private neighbours.

{c) Suppose there are only two private neighbours. If they are in the same line, they
can be destroyed from at maost four cells in that line, and from at most two cells not
on that line. If the private neighbours are not on the same line, the cells which are
pn-destroyers are those cells that lie on the intersections of the lines that intersect the

two private neighbours. There are at most six such positicns (see Figure 8.2). O

Theorem 8.5 ir(Hy) = 3.

Proof. We know that ér (Hs) < v (Hs) = 3. Suppose ir (Hs) < 3. It is easy to see

that ir (Hg) > 1, so consider an irredundant set of Hy consisting of two queens. There
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\\/ /\

N/
\

Figure 8.2 If ir{Hs) = 2, then there are at most six pn-destroyers

are 17 unoccupied cells, All of them must be either pn-destroyers or pn-less. This is
impossible, because each queen’s private nejghbours can be destroyed from at most 6
cells, and the number of no-pns is at most 4, i.e. the total number of pn-destroyers or
pn-less cellsis 6+ 6 + 4 < 17, O

Lemma 8.6 [f ir (H;) = 2, then:
(a) There are at least eight open cells.
(b) FEach queen has at least four private neighbours,
(c) There are no pn-destroyers.

Proof. (a) The two queens are adjacent (Lemma 8.2). Therefore if the BER is the
edge, there are at least eight open cells in the BER. If the BER is not the edge, there
are even more open cells in the BER (see Lemma 7.3).

(b) Because the queens are adjacent, both queens have two lines that can have private
neighbours. It is easy to see that each line has at least two private neighbours.

(c) The private neighbours lie on two lines (at least two on each line). Nocell on one
of these lines is a pn-destroyer, because then it cannot destroy more than one private
neighbour on the other line. A queen not on one of these lines can destroy at most two

private neighbours on each line, Thus there must be a2 queen with only four private
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Figure 8.3 If ir (H7) = 2, there are no pn-destroyers

neighbours, and such a queen can only be in a corner (see Figure 8.3). It is now easy

to see that there are also no pn-destroyers. a

Theorem 8.7 ir(H;) = 3.

Proof. We know ir < « = 3. Suppose ir(H7) = 2 and consider an irredundant set of
H7 with two queens. By Lemma 8.6 there are no pn-destroyers and there are at least
eight open cells. But all open cells must be pn-destroyers (Lemma 8.1), which is a

contradiction. Thus the theorem follows. O

8.2 Irredundance in the queens graph

The values for ir((),,) for n = 1,2,3 and 4 are easy to determine by inspection. We

now determine ir (Qs).
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Figure 8.4 [Ifir (Qs) = 2, there are at least seven pn-less squares

Lemma 8.8 If ir (Qs) = 2, then:
(a) The number of pn-less squares is at most seven.
(b) FEach queen has at least two private neighbours.

(c) Each queen’ s private neighbours can be destroyed from at most seven cells.

Proof. (a) Consider anirredundant set of two queens on ()s. Again, the pn-less squares
are the unoccupied squares that are not in line with the open squares, There are at least
three open squares (Lemma 8.3). The minimum number of rows and columns three
squares can covet, are four. This leaves at most 9 squares, 7.e. 7 unoccupied squares
(see Figure 8.4).

(b) If the two queens are in the same row (column), each queen has at least two
private neighbours in its column (row). If the two queens are on the same diagonal,
each queen has at least two private neighbours in its row and two in its column.

(c) If a queen has only two private neighbours, the queen must be on the edge (see
Figure 8.5). There are then at most four pn-destroyers in line with the private neigh-
bours and at most three pn-destroyers not in line with the private neighbours. Itis easy

to see that in all other cases there are fewer pn-destroyers. O
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Figure 8,5 Ifir ((J5) = 2, there are at most seven pn-destroyers
Theorem 8.9 1r{();) = 3.

Proof. Suppose ir ((J5) == 2 and consider a maximal irredundant set of Qs consisting
of two queens. There are 23 unoccupied squares. All of them must be either pn-
destroyers or pn-less. This is impossible, because each queen’s private neighbours can
be destroyed from at most seven cells, and the number of no-pns is at most seven, i.e.

the total number of pn-destroyers or pn-less cellsis 7+ 7 + 7 < 23. a

In the final two results of this thesis we determine ir ((Js).

Lemma 8.10 [f ir (QQg) = 2, then:
(@) The number of pn-less squares is at most 14.
(b) Each queen has at least four private neighbours.
(c) FEach queen’ s private neighbours can be destroyed from af most five cells.

Proof. (a) Again, the pn-less squares are the unoccupied squares that are not in line
with the open squares. There are at least three open squares (Lemma 8.3). The mini-
mum number of rows and columns three squares can cover, is four. This leaves at most

16 squares, i.e. 14 unoccupied squares
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e e 7

5

Figure 8.6 Ifir ((J¢) = 2, then each queen has at least four private neighbours

(b) Constder any queen. There are Nive possible private neighbours in the row (col-
umn) of the queen. Depending on the radius of the queen, there are 5, 7 or 9 squares
in the same diagonals as the queen which can be private neighbours. It the two queens
are in the same row (column), it is clear (see Figure 8.6) that there must be at least
three private neighbours per row (column) and one on any of the diagonals that inter-
sect the queen. If the queens are on the same diagonal, there must be at least three
private neighbours per row and per column (see Figure 8.6).

(c) Consider any queen. There are at least three private neighbours in the same row
(column) as the queen plus at least one other private neighbour. There are at most three
squares in the row which will destroy these private neighbours. and at most two other

squares. U
Theorem 8,11 ir(Q¢) = 3.

Proof. Suppose ir ((s) = 2 and consider a maximal irredundant set of (Jg consist-
ing of two queens. There afe 34 unoccupied cells. All of them must be either pn-
destroyers or pn-less. This is impossible, because each queen’s private neighbours can
be destroyed from at most five cells, and the number of pn-less squares is at most 14,

i.e. the total number of pn-destroyers or pn-less cellsis 14 +- 5 4 5 < 34. O
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Using the same method as in the proofs of the above theorems, it can be shown that

ir (Q7) = 4. However, the proof in this case is much more technical and is therefore

omttted.
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Appendix A
Dominating sets

For all sets the lower left comer square has coordinates (1, 1).

n=5
1111343 2 111543 3.112244 4 112332 5.112353
6. 112442 7.112543 8. 112552 9.113334 10, 113355
11. 113443 12, 112443 13 114554 14 113553 15 113453
16 113444 17. 112454 18. 121433 19.12 1453 20.1221133
21, 122135 22122144 23. 122354 24.123343 25 123345
26. 123352 27123452 28 123552 29124245 30 132353
31.123343 32.222324 33.222442 34.222443 35 223344

36, 233233 37.233343

n=4
113553
n=7 -
1. 11224664 2. 11274365 3. 11355377 4 112535464

5.11354574 6. 11354663 7 12213764 8.12264155
931221356 10. 13364166 11. 13364166 11.14445464

13. 2233 44 66

n = § (Please see next page.)
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11112265165
4,1113375175
71113455582
10. 11 144663 78
13. 1122 456783
16. 1123 3246 85
19, 1133324884
22 1123354254
2511 23 37 52 66
2%. 112338 52 86
311123466774
H 1123476582
37.11243342 67
40. 1124 3763 To
43, 1124 38 73 85
46, 11244558 82
49, 1124 475277
52. 1124477175
55.11244773 82
58.11253854 64
Gl. 112634 4883
64. 11264378 84
67. 11 26 48 64 82
70.1127387382
7311284553 54
76, 1128 46 64 82
79. 11 34 46 34 65
2. 113466376
85. 1134466773
88. 11 34 48 54 84
M. 11 M 456387
54, 1135375373
97. 11364863 84
100. 1213487581
103. 121548 73 81
106.122126 3873
109.1221334875
112, 1227 34 57 83
115. 1221 356814

2. 1112465465
5. 1113373275
8. 1114174674
11. 11 1824 53 87
14. 112246 5774
17. 112332 47 86
20. 11233235775
23, 11233546 54
26. 1123376276
201123465383
32. 1123476276
351123486276
38. 1124355883
41, 11 2438 63 85
4. 11244247 74
471124475275
50. 1124476275
53. 1124477283
56. 11 2448 62 86
59. 11 2543 6783
62, 1126346772
65. 1126476274
6. 112733 5864
71. 1128434584
741128455482
77.113344 5577
80. 11 34 45 54 84
83.1134466378
865, 11344764 70
80. 11 344863 85
92. 11 3448 67 83
95 1135375374
98. 11444558 82
101. 1214215783
104. 121638 5474
107.1221 334685
110, 122133 48 84
113. 1221 3544 53
116, 122135 A% 83

Appendix A

31113275275
61113375375
5.111428 5285
12. 112233 5775
15. 1122 46 64 88
18. 1123324875
21. 1123344267
24. 11233662 84
27. 11233842 87
30. 112346 3465
33. 131234763 85
3G, 11234863 85
39.1124375375
42. 11243863 36
45. 11244556 82
48. 1124 47 52776
51. 1124 476276
54.1124 4772 86
57.1125376474
601125476472
63. 112643 58 73
66, 11 26 48 62 §4
59, 1127384384
72112844 5582
75, 11284554 84
78. 1134 3664 34
§1. 11 34 46 5763
84. 113446631 85
87. 11 4477186
90. 11 34 48 63 86
93. 1134437387
96. 1135446782
99. 11 4548 54 84
102. 12143761 86
105. 1218215583
1081221334786
111, 1221335775
114. 1221 3567 84
117. 12213574 88
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118.
121,
124.
127.
130,
133.
136.
139,
142,
i45.
148.

151,

154,
157.
180,
163.
166.

165.
172.
175.
178.
181,
184,
187.
180.
193
196.

139,

202.
205.
208.

211

214.
217.
220,
223
226,
229,

232.

1221 36 57 84
12213606683
1221 3773 88
12213856 ™M
12214567 83
1221 46 57 83
12214678 83
1222465383
122331 5688
1223476581
1224 3143 88
12243341 85
1224415677
1224 48 75 81
122548 73 81
1226335743
1227336874
122744 53 65
122746 53 83
1228447581
123346 81 85
1234 37 42 85
12 34 4773 85
1234 48375 81
123543 54 8%
12354873 81
1236 44 64 84
12354671 83
1237437884
1237 44 62 83
123844 65 84
12 42 46 47 81
12444778 81
1246475383
1321256478
1321466874
13223144 67
1322314774
1322314876

119.
122.
125.
128.
131,
13a.
137,
140,
143.
146,
149.
152.
155,
158.
161.
164.
167,
170,
173.
176.
179,
182
185.
188.
191.
194,
197.
200.
203
2046.
209,
2i2.
215
218
221.
224.
227,
230.
233

122136 5874
12213748 83
1221385564
1221 3864 67
1221456873
1221455873
1222 26 51 65
122248758t
1223356784
1223487581
1224316578
12243543 88
12244773 81
122531 66 84
122631 57 83
122642 57 83
1227413366
122744 53 67
1228337187
123146 47 81
1233486581
1234465387
1234 48 53 87
1235427288
12354478 81
12 3548 74 81
12 36 44 67 73
12364673 83
1237446176
12 384344 84
123844 75 8]
1243 44 48 81
1244 487581
1246477381
1321273864
13214678 82
1322314554
1322314787
1322 31 56 88
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124,
123
126.
129,
132,
135.
138
141.
144,
147.
150.
153
156.
159.
162,
165.
168,
171,
174.
177.
180,
183.
186,
189,
192.
195,
198.
201,
204.
207
210
213
216.
219,
222.
228,
228,
231
234,

1221 36 63 66
1221376438
1221385583
1221386683
1221465574
122146 64 88
122246 51 65
12233144 67
12233866 81
1224314355
1224334176
1224386377
12244775 83
1225357484
12263351 65
122644 51 65
1227416873
1227446176
12 28 44 66 81
1233467285
12 33487581
1234 46 5581
1234 48 73 87
123543 5468
123548 72 84
12364315874
12364468 84
12364764 81
12 37 44 61 85
123844 51 85
12 38 4571 84
12434578 81
12464753 81
131641 6478
1321345782
1322275275
1322314585
132231 4855
1322315773
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235,
238,
241,
244,
247,
2501
253.
156,
259
262.
265.
2568,
271
274,
277
280
283,
286.
289,
292,
295,
298,
301.
304.
307.
310.
313,
316,
315.
322,
j25.
128,
KX} N
334,
337.
0.
3.
6.
349,

132231 58 85
1322344145
1322386581
13224772 84
13244977288
1325317884
13253416478
1325477284
1327315684
13274] 56 84
132742 44 §7
1327445276
1328316774
1328 41 54 66
1328 44 62 86
13313663 88
1331456278
1331485267
1334477188
1335425468
1336416478
1336457182
13374451 75
13384461 85
1338448185
1416325872
1418333276
1421466378
1422476175
1423 32 41 66
1423 32 66 81
14233761 86
14234761 85
1425335882
1426325872
1426417783
14264315871
142831 53 67
1431376378

236,
235,
242,
245,
244,
251.
254
257
260.
263,
266,
269,
272,
275,
278.
281
284.
287.
290.
293.
296,
265,
302,
305,
308,
311
314
3.
320.
323
326.
324,
3.
335
338
341.
. 142743 53 88
347.
350.

1322317887
1322375175
132238 6681
13224774 8]
13 24 48 66 82
1325326671
132544 56 B2
132641 64 78
1327315864
132741 5864
132742 5681
1327446276
13283241 66
1328445176
13268457284
1331375573
1331475682
1333375175
1334436681
1335445881
133641 64 8§
13364771 82
1337446176
13384461 86
13444771 82
14 1741 74 88
1421 365872
1422355883
14 22 48 51 85
1423324177
142333 66 82
1423 37 62 B3
142348 71 85
142541 6783
14 26 32 77 81
14 2642 68 82

142832 57 81
1431 466378

Appendix A

237,
240,
243
244,
249,
252
255,
258.
261,
264.
267,
270,
273
276,
279.
282,
285,
288
251,
254
257
300.
303
306.
308,
2.
315
318,
321
324
327,
330.
333,
336.
339.
342.
345.
3438
asn.

1322344176
13223776 81
13224771 84
1372486176
1325316478
13253278 84
132544 54 82
13264254 88
1327335275
13274: 6478
1327445275
1328315467
1328414476
13284461 76
13284772 84
1331445577
13314758 62
334457188
1334487387
1336416477
1336435873
1337437884
1338 43 66 81
1338447185
13454871 82
14 17 41 77 83
1421 465873
1422466571
1422 4862 86
14 23 32 57 81
14233572 84
1423376286
1424427783
1425427783
1426336772
1426 42 77 83
14 2831 61 67
14 31 37 58 A3
14 3146 67 82
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352,
355.
358.
361.
364.
367.
370.
373.
376.
379.
382.
385.
388.
391.
394.
397.
400.
403.
406.
409.
412,
415,
418.
1.
424,
27.
430.
433,
436.
439.
442,
445.
448,
451.
454.
457.
460.
463.
466.

1431475862
14324553 68
143335 58 81
1433466572
1433487276
1436435872
14 3742 67 81
14 38 43 66 81
14434771 88
1522476471
152344 58 81
1532446782
153443 6782
1621345872
1623446771
162442 68 82
163244 68 84
163348 63 81
163443 5782
17223873 81
17224874 81
17243474 88
1728337481
1733437882
1734424383
17344373 88
17364463 71
1821245784
1822 44 67 84
182342 44 67
18 24 42 53 67
1824426782
1832344484
1834 43 53 55
18 34 44 53 87
18344473 87
1834 44 84 87
21242635872
2134455782

353.
356.
359,
362.
365,
368.
371
374.
377.
380.
383.
386.
389.
392.
39s5.
398.
461,
404.
407.
410.
413.
416.
419.
422.
425.
428.
431.
434.
437.
440.
443.
446.
449.
452.
455.
438.
461.
464,
467.

1431486782
1432456673
1433376376
143346276
143541 6782
1437416673
1437446176
1441 44 78 87
1521346883
1522476472
152442 6378
1533 44 58 Bl
1534436872
1622 44 67 84
1624325872
1632345872
1633437884
1633 48 64 81
1634435872
1722435884
17234653 83
172442 56 83
1732 34 57 83
17334378 84
1734435782
173448 54 82
17434478 81
1821345782
18224662 84
182432 53 67
1824 42 66 82
1824427783
183234 5674
183443 53 88
183444 54 84
1834447581
1842 43 44 67
2124275684
2134455734
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354.
357.
360
3e3.
366.
369.
.
375
378,
381
384
387.
390.
393.
396.
399.
402.
405.
408.
411.
414
417.
420.
423,
426.
429
432.
435,
438,
441.
444,
447.
450.
453.
456.
459.
462.
465.
468,

1432 36 58 72
14324658 72
14 3346 63 76
14 33 46 72 87
1436435278
143742 58 61
14 38 41 66 83
1442 46 68 81
1522 44 58 83
15233467 82
15313467 82
1534435782
1543 44 58 81
1622 4862 84
1624 42 6782
163244 58 72
16 3348 61 84
16 34 43 55 61
1722 38 43 84
1722 48 54 83
1723 48 54 81
1724 42 58 63
17 323473 88
17 33 45 54 64
17 34 43 71 88
173544 53 71
1821245782
1822 44 53 67
18 22 46 64 81
1824 3277 83
1824 42 67 73
1827336474
18344344 84
18 34 43 66 81
18 34 44 65 84
18 34 44 76 84
1843 44 58 64
2124275884
2134 456783
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469.22232654 65 470.2224274376 471.22243763 'fﬁ
4722224386377 4732224476376 474.222447 7286
475.2224486286 4762226345763 4772226386384
478.2226435884 4792226436884 480. 222643 78 34
481.22264468 84 d482. 2226485463 4835.22 26486284
484. 22264863 84 4852226486484  486.2227 336874
d87.2233 446688 488.2233446886 489 2234455365
490.22344553 67 4%1.2234455377 4592.2234455378
493.2234455386 494.2234485385 495 2234485387
4%6.22 344873 87 497.2236376373  498. 22 44 48 56 83
499.224448 6684  500.23254871 84 501, 23274244 67
502. 2331485267 503.2333366284 5042333477286
505.23344535277 506.2334456781 5072334476581
508.2334487185 509.2335425466 510, 23354354 8%
511.2335437388 512.233544 5681 513 2336424467
514.233642 7783 515.2336445265 5162337437388
517.233842 5167 5182338445285 519,23 4246 47 81
5200 234494856 81 521, 23444862 86 522, 24 26 34 T4 RS
5232426426283 524. 24264263 8% 52524264264 88
526.2427335275 527.2427415684 518 2427425572
529. 2428316167 5302428346377 531.2428426682
532, 24284406286 533.2433386285 5342433455277
535.2433456276  536.2433460772 537 2433477276
538.2433477286  53%.2433486286  540.24 393574 88
541. 2434445484 542.2434446385 343 243447276
544.243444 7285  545.243444 7488 546 249344473 83
547243444 7885 548.2434457188 549243477388
550.24 34487185 551.2435426178 552, 241354367 81
553.2435447276 554 2436426377 5552436427783
556.243643 5277 557.2435437782 558.2436446572
559.2436446772 560 2436447276 561.243644 7285
562 2436447287 561.2436457T7182 564 2436477182
565.2437425681 566.24374 5861 567.2437447276
568. 243842 5167 569 2438427783  570.2438437782
571.243844 6285 572. 2438446286 5732438446582
5742438446682 §75.2438447276 576243844 T2 85
577.243844 287 578.2444477286 579, 24 444862 86
580.253344 5882 581.253344678] 5B2.2533447884
583.2533476472 584.253443678] 585253436871
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586.
589,
592,
595,
598,
601.
2833748
.28334664 82
610.
613.
616,
619,
622.
625,
628,
631.
634,
637,

2534 44 46 81
25344871 83
2633446772
2633486284
263443 57 81
27334378 84

2843444553
3134376378
3134486773
3334354654
3334447887
33344873 87
3435487281
3442 4667 81
3444 46 54 85
3444 48 73 47

n=9

9.
13.
17.
21

587
590.
593,
596,
599.
602
505,
608,
611
614,
617,
620,
623.
626,
629,
632,
635,
638.

1.1123376276
5.

1135597397
13 28 44 62 86
1346 54 6579
2236486773
3447556376

n=10

1339557197

n=11

2534445883
2633344883
2633455462
26334864 82
263443 5871
2735445372
28334373 84
283443 5582
3134375861
3134376781
3134486782
333355881
33344771 88
343543 54 148
3137437388
34434877384
M 4446 55 81
3844455483

2.1124 3863 86
6. 11 45 59 84 98
10. 1338 44 61 86
14. 14233241 77
18, 22 44 55 66 88

{2.4) (4,10) (6,6) (8,2) (10,8)

Appendix A

588. 253446 71 8t
591,26 3343 78 84
594. 26 3345 54 64
597. 26 34 43 55 63
600. 27334244 67
603. 28 333463 77
606. 28 33 44 66 82
609. 28 34 48 71 83
612. 31 34 37 58 63
615. 31343768 74
618. 32 34 37 57 81
621. 33 343763 76
624. 333448 67 81
627. 34 3544 78 81
630. 3442 4647 81
£33, 3444 46 54 65
636, 34 44 48 54 83

3. 11 24 48 62 86
7.122255381 98
11. 13385561 86
15. 144955 61 96
19. 23 385572 87

84

4. 113558 83 97
8. 1322315885
12. 1339557197
16. 22 34 48 73 87
20. 24 48 55 62 86



Appendix B
Programmes

Programme 1

program domination; { n=4% {4,6)~dom sets3;
assimmetric }

Uses CRT,Printer:

var
dominating : boolean;
ml,m?,m3,md : integer;

ql,92,93,94,95,96,97,98,99,910,4q11,
ql2,q9l3,g914,ql5,q16,q17,9l8,9ql192,q20,g21 : integer;

ce,m,n,c k,t,1,a,0%x,0vy,s5,d,1,V,w,

diag, sdiag : integer;
Queen¥, QueenY : array[l..25] of integer;
soekX, soekY : array[-

12..12] of integer;
SoekD : arravil..z22} of integer;
openx, openy, openD ;. oar-—
ray[l..4] of integer;
OnDiag ! ar-
rav[l..4,1..4] of integer;
£ : text;
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Function QueenCK(a, s, Qx integer) boolean;
Begin
QueenOK := true;
Qy = s-Qx;
if a=1 then
begin
Queenx[l] := Qx:
QueenY([1l] := Qy:
exit;
end;
for ¢ := 1 to a-1 do
if (Qx = Queen¥[c])
or (Qv = QueenY [c])
or ((Qy-Qx) = (QueenY[c]-QueenX[c])) then
begin
QueenQK := false;
exit:
end;
QueenX[a] := Qx;
QueenY[a] 1= Qy;
End;

Procedure DetermineOpenlines;

Begin
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for ¢ 1= -k to k do
begin
Soek¥[c] = C;
ScekYic] := (;
end;
for ¢ 1= 1 to 2*¥k-3 do
beqgin
SoekX{queenXicii := 1;
Soek¥([queenY[cl] = 1;
end;
t = 1;
for ¢ = -k to k do
if (SoekX{cl=0) then
begin
OpenX[t] := c!
t = t+1;
end;
t = 1;
for ¢ = -k to k do
if {(SoekY[cl=0} then
beqgin
QOpen¥Yit] = c;
t oi= £+1y
end;
for ¢ := 1 to 2*k-1i do SoekD[c]

for ¢ =1 to 2*k~1~2 do
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begin
diag := QueenY[c] - QueenX[c];
d := trunc({diag + 2*k-i+1)/2};
SoekD[d] := 1;
end;
t = 1;
for ¢ := 1 to 2*k-i do
1f (SoekD[c]=0) then

kegin
OpenD[t] := c*2-2*k+i-1;
t = t+l;
end;
for ¢ =1 to i+l do SoekD[c] :=
for ¢ := 2*k~i-1 to m-4 do
begin
diag := Queen¥Y[c] - QueenX(c]:

d := trunc((diag + i+2)/2);
SoekD[d] := 1;
end;

t = 3;

for ¢ := 1 to i+l do

if (SoekD[c}=0) then

begin
OpenD[t] := c*2-1-2;
r o= t+l;

end;
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for u := 1 to 4 do
for v := 1 to 4 do

OnDiag[v,u] := 0;
for u := 1 to 4 do {y}
for v := 1 to 4 do {x}
for w := 1 to 4 do

if OpenY[u]-OpenX[v] = OpenD[w] then
begin
OnDiag(v,u] := w;
sdiag := Open¥[u] + OpenX|[v]:
if abs(sdiag) <= 2*k-i-3 then

begin
¢ = 2*¥k-i-2 - abs(sdiag):
if sdiag<0 then c := c+l;
if (i-abs(sdiag)) mod 2 = 0 then c := c+i-1;
if {Queen¥([c] + QueenX[c]) = (Cpen¥[u] + OpenX[v]} then

if Queenx[c] > OpenX[v] then OnDiag([v,u] :=0;
end;
end;

End;

BEGIN
[Assign{f,’m\49%asopdé6.pas’);}
{Rewrite (f); }
clrscr;

cc = 0;
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k = 12;

1= 4;

n := 4*k + 1; { size of board }

m = 2*k + 1; { no cf Queens }

writeln(n,’x’,n,’ (F,i,7,7,1+2,%)");
for gl := 5 tc 8 do

if QueenOK(1,17,ql) then

for g2 := gl-2*k+i+4d to -gl do {e==-17}

if QueenCK(2,-17,g2) then
for g3 := 3 to 12 do {s=+15}
if QueenOK(3,15,g3) then
for g4 := -12 to -3 do {8==15}
if QueenOK(4,-15,g4) then
for g5 := 1 to 12 do {s=+13}
if QueenCK(5,13,g5) then
for g6 := =12 to -1 do {5=-13}
if QueenQK(6,-13,g6) then
for g7 = -1 to 12 do [s=+11}
if QueenOK({7,11,q7) then
for g8 := -12 to 1 do {s=-11}
if QueenOK(8,-11,g8) then
for g9 := -3 to 12 do {5=91}
if QueenQK(9,9,g9) then
for gl := -12 to 3 do {g=-9}
if QueenCK(10,-9,gql0) then

for qll := -5 to 12 do {s=7}
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if QueenOK({1l1l,7,gll) then
for glz := -12 to 5 do {5=-7}
if QueenQOK(12,-7,gl2) then

for gl3 ;= -7 to 12 do {s=5}
if QueenOK(13,5,gl3) then
for gl4 := -12 to 7 do {s=-5}

if QueenOK (14, -5,gl4) then
for glb := -8 to 11 do {5=31}
if QueenCK(15,3,g9l5) then

for glé := -11 to 8 do {s=-3}
if QueenOK(16,-3,glé) then
for gl7 := -9 to 10 do L {s=1}

if QueenCK(17,1,gl7) then
for gl8 := -10 to 2 do {s=-1}
if QueenOK(18,-1,glB) then
for g19 := -1 to 3 do {s=2}
if QueenCOK(19,2,ql9) then
for g20 := -3 to 1 do {s=-2}
if QueenOK(20,-2,g20) then
for q21 := -2 to 2 do {5=0}
if QueenCK(21,0,4921) then
begin
DetermineQpenlLines;
for ml1 :=1 to 4 do
if OnDiag[ml,1]1>0 then
for m2z := 1 to 4 do
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if (OnDiag[m2,2]>0) and (m2<>ml})
and {(Ondiag[ml,l]<>0OnDiag{m2,2}) then
for m3 := 1 to 4 do
if (OnDiagim3,31>0) and (m3<>ml) and (m3<>m2)
and {Ondiag[m3,3}<>0OnDiag{ml,1])
and {Onbiag[m3, 3]<>0OnDiag[m2,2)) then
for m4 := 1 to 4 de
if (OnDiag(m4,4]>0) and {md<>ml}
and {(m4<>m2) and (m4<>m3)
and {Ondiagf{m4,4]<>OnDiaglml, 1]}
and (OnDiag[md,4]<>0OnDiagim2,2])
and {Ondiag[md,4]<>0OnDiag(m3,3]) then
begin
CueenX[m-3] := OpenX[ml];

QueenY [m~-3] := CpenY[1l]:
QueenX[m-2} := OpenXim2];
QueenY[m-2] := OpenY[Z2];
QueenX[m-1] := OpenX{m3];

QueenY[m-1] := OpenY[3];

QueenX [m] CpenX {md};

Queen¥ [m] 1= QOpenY[4},;

co = co 4 1

write(cc,’. ');
for c:=1 tomdo write{' {",queenXicl,’,’,queen¥Yici,’)");
for ¢ := 1 tom do write(f,queenX[cl:4, queenY[c]:4);

writeln(f);
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end;
end;
close{f);
writeln (' number=*,cc,” That is all’};
readln:

END.
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Programme 2

Pregram RyeKeclcmme3l; {generate all comb of}

{rows for 29x29 subbord}
Uses CRT;
Var
v1,v2,vy3,v4,v5,v6,v7,v8,v%,v10,v1ll,vl2,v13,v1l4,vyl5,
X,¥,49,k,m,n,gamma,Aantopl, rand, d, gns,
c,halfver,halfsom,1l,a, ax,bx : integer;
queenY, queenx : array[l..13] of integer;
rypatroon : array[-13..13] of integer;
count : longint;

£ : text:

Function RyOK{a,bx : integer) : Booclean;
Begin

RyOK := true;

Queen¥[a] := bx;

if a=1 then exit;

for ¢ := =-1+1 to bx do rypatroon[c] := 0;
for ¢ := 1 to a do rypatroon[QueenX[c]] := 1;
for ¢ =1 to a-1 do if (((QueenX[cl+bx) med 2) = 0) then
begin
ax := QueenX[cl;
halfsom := trunc{{ax+bx}/2);
Halfver := trunc{({bx-ax)/2);:
if (rypatroon[halfscm]=0) {Theorem 5.5}
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and (rypatroon(halfver-11=0) then
begin
RyOK := false;
exit;
end;
end;

if a=gns then

begin
for c = bx+]l to 1-1 do rypatroon[c] := 0;
for ¢ =1 to a-1 do
for d := c+l to a do
1f ({{QueenX[c]+QueenX[d]) mod 2} = 0} then
begin
ax := QueenX[c]:
bx := QueenX[d]:
halfsom := trunc((ax+bx)/2);
halfver := trunc((bx-ax)/2);
if (rypatroon[halfsom]=0) {Theorem 5.5}

and ((rypatroonl[halfver-13=0)
or (rypatroon[l-halfver]=0)) then

begin
RyQK := false;
exit;
end;
if {(rypatroon[-halfsom]=0) {Theorem 5.6}

and ((rypatroonl[halfver-1]=0)
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or [(rypatroonil-halfver}=0}]

and [ (rypatreonf[ax]=1}) or (rypatroon[bx]=1}} then

begin
RyQK := false;
exit;
end;
end;
end;
End;
BEGIN
clrscr;
k = 7;
gamma ;= 2%*k+1;
count = 0;
1 := 14; {sub-board = 21+1}
gns = 2*1-2%k-1; {numbher of rows with gns cross-

ing subboard}

writeln("board: ',4*k+3};

writeln({’total nuber of queens:’,gamma};
writeln{’sub-board;’,2*1+1); |

writeln{’ number of rows with queens crossing subbcard:’, gns);
for yl := =13 to ~6 do {most rows in lower half of board;

if RyCK{1l,v1l) then
for y2 = yl+l to -5 do
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if RyCK(2,y2) then
for y3 := y2+1 to -4 do
if RyOK(3,y3) then
for y4 := y3+1 to -3 do
if RyOK(4,y4) then
for y5 = yd+1 to -2 do
if RyOK({5,y5) then
for y6 := y5+1 to -1 do
if RyOK(6,y6) then
for y7 := y6+1 to 0 do
if RyCK(7,y7) then

for y8 := y7+1 to 8 do
if RyOK(8,y8) then

for yv9 := y8+1 to 2 do
if RyOK(9,v2) then
for y10 := y9+1 to 10 do
if RyOK(10,y10) then
for y11 := y10+1 to 11 do
if RyOK(11l,y1ll) then
for yl2 := yl1+1 to 12 do
if RyOK{12,y1l2) then
for y13 := yl2+1 to 13 do
if RyOK(13,y13) then

begin

count := count+1l;
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write(count,”. 7);

for ¢ := 1 to 13 do write(QueenXicl:4);
writeln;

for ¢ := -13 to 13 do write(rypatroon(c]l);
writeln;

end;

writeln (! Number of patterns = ',ccunt,’. The End.”);

readln;

END.
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Programme 3

Program DominationSqg31; {search edge dominating sets }
{for 29x29 subbord {senter}}

Uses CRT;

Var

x1,x2,x3,x4,%x5,x6,x7,%x8,%x9,x10,x11,

v1,v2,y3,y4,y5,v6,y7,y8,y9,v10,vyl1,

by3,by2,bxl,bx0,

d,s,a,cc,c, k, gamma, Qy,Qx,ry,op,d; J,bulteqg, teken, kol, qns,

randY, randX, beging, EndQ : integer:

gueenY, queenX : arrayi~3..11] of integer;
Beset r arrayf{l..13] of integer;
Uit s array[l..2] of integer;
count : longint;

i ¢ text;
Function RandOKbL:{a,(Qx,Qy : integer) : boolean;

Begin

randOKb := true;
kol := abs{Qx};
ry := abs(Qy)}:
if {(kol=1}) or (kol=2} or {(kol=4) or (kol=5]} {empty lines?
or (kol=7) or {(kol=8) or (kol=11l) then
begin
randOklby := false;

exlit;
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end;
if (ry=1) or (ry=2) or (ry=4) or (ry=5)
or (ry=7) or (ry=8) or (ry=11l) then
begin
RandCKb := false;
exit;
end;
if a=l-buiteq then
begin

0x;
QueenY([a] := Qy;

QueenX[a]

exit;
end;
Queen¥Y[a] := Qy;
QueenX[a] := Qx;
for ¢ := l-buiteq to a-1 do ({check for queens on same line}

if (Qx = QueenX[c]l) or {(Qy = Queen¥Y[c])

or {(Qy+Qx) = (QueenY{c] + QueenxX[cl))
or {(Qy-Qx) = (QueenY|[c] - Queenx(c]l)) then
begin
RandOKb := false;
exit;
end;
randY := -3j;
for randX := 1-j to j-1 do
begin
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cc = 0;
for ¢ := l-buiteq to a do
begin

if queenX[c]

if (queenX[c]+queenY([c])

il

il

if {queenX[c]-gqueen¥|[c])
if cc>»l then
begin

randOKb := false;

exit;
end;
end;
end;

randy

J:

for rand¥ 1-3 to j~1 do

kegin

cc 0

-
#

for ¢ 1-buiteq to a do

begin

if queenX[c]
if {queenxX[c]+queen¥Yic])

if (queenX[c]~queenY[c})
if cc>1 then
begin

randCKb := false;

exlt;
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end;
end;
end;
randX := j;:
for randY := 1-j to j-1 do
begin
cc = 0;
for ¢ = 1-buiteg to a do
begin
1f gueen¥[c] = RandY then cc 1= cc+l;
if (gqueenX[cl+gueenY|[c]} = (randX+rand¥Y) then cc :
if (gqueenX[c]-gqueenY|[c]} = (randX-randY) then cc :

if cec>1 then

begin
randCKb := false;
exit;
end;
end;
end;
randX := -3j;
for randY := 1-j to j-1 do
begin
cc = 0;
for ¢ = l-buiteqg to a do
begin
if queenY([c] = Rand¥Y then cc := cc+1l;
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if (gueenX[cl+queen¥|c]) = {randX+randY; then cc = cc+l;
if {gqueenX[c]—queen¥ic]}! = {randX-randY) then cc := cc+l;
if cc>1 then
begin
randOKb := false;
exit;
end;
end;
end;
End;
Function RyOK({a,Qy @ integer}: boolean;
Begin
RyOK := true;
for ¢ ;= l-buiteqg to 0 do
if {Qy = Queen¥(cl])
or {{QueenY[c] + QueenX[c]} = (Qy-3))
or {(Queen¥Y[c] ~ QueenX[c]) = (Qyt+i))
or ((QueenY{c} + QueenXicl) = (Qy+]})
or {{QueenY[cl] - QueenX[c]) = (Ry-j)) then
begin
RyOK := false;
exit;
end;
for ¢ 1= 1 to a~1 do
if {({QueenY[c}+QueenXicl}) = (Qy~-]))
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or {{QueenY|c]l-Queenx(c]) = {Qy-3i)) then
bagin
RyOK := false;
exit;
end;
QueenYla] = Qy:
End;

Function RandOK(a,(Qx : integer) : boolean;

Begin

randQK = true;

Qv = Queen¥l[a];

Queen¥fa] 1= Qx;

kol := abs{Qx);

if {(kol=1) or (kol=2} or (kol=4} or {xol=E5} or {(kol=7;
or {kol=8B) or {(kol=11l) then

begin
RandQK := falseg;
exit;
end;
for ¢ ;= 1-huiteq to a-1 do {check for queens in the same line}

if (Ox = Queen¥[c]l)

or ({Qy+0x} = {QueenY[c] + QueenX[cl})
or {{Qy-0Qx) = {Queen¥[c] - Queen¥X[c])) then
begin
RandOK := false;
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exit;
end;
for ¢ ;= 1-buiteqg to a-1 do {edge squares in the same col}

if {{QueenY¥Y[c]

QueenX{cl) = (-j-0x))

or {(Queen¥Y[c] + QueenX[c]) = (-5+0x})}
or ((QueenY[c] + QueenX[cl} = (+7+0x))
or ({QueenY[c] - QueenXicl} = {+3~Qx)) then
begin
RandOK := false;
exit;
end;
d := abs {0y - Qx}; {edge squares in the same d-
diag}
if {(Qy > Qx) then teken := 1 else teken := -1;
for ¢ := l-buiteq to a-1 do
if (abs(QueenY[c] + QueenX[cl; = (2*] - di}
or {[(QueenYic] = (j - d)*teken)
or {(Queen¥X([c] = [{d - Jj}*teken) then
begin
RandCK := false;
exit;
end;
5 := abs{(Qy + OX;: {edge squares in the same s-
diag}
if (Qy+Qx > 0} then teken := 1 else teken := -1;
fer ¢ = 1-buiteq to a-1 do
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if (abs{QueenY[c] - QueenXicl) = {2%*]
or (Queen¥Y[c] = {s - J)*teken]
or {QueenX[c] = (s - Jj)*teken; then
begin
RandOK := false;
exit;
end;

End:;

Function Ryeuitgesorteer : boolean;

Begin

Ryeuitgesorteer := true;
= 1

for ¢ = 1 to gns do

if (Beseticl=by2) or (Beset[cl=by3} then

begin
uitf{cc] = c;
cc := CC+l;
end;
for ¢ = 1 to uit(l]~1 do QueenY[c] := Besetic]:
for ¢ := uit[l] te uit[2]-1 do CQueen¥Y{c] := Beset[c+l];
for ¢ := uit[Z2] to gns do QueenY{c] := Besetc+2]:
End;
BEGIN
clrscr;
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J o= 14; {2+1 x 2j+1 sub-board}

gns := gammg-4*k42*5-2; {occupied rows cutting sub-
board}

buiteqg := 8*k-4*j+4; {gns outside sub-board}

writeln{(4*k+3,” x ',4*k+3,’ board *}:
writeln{2*j+1,” x ",2*j+1,’ sub-board’):
writeln(buiteq,’ queens outside sub-board’};
writeln (gamma-buiteq,’ gueens inside subbord®);

writeln({gns,” occupled rows cutting sub-becard’):

count := 0;
Beset[1l] := -~13; Beset [13] = 13;
Beseti?2] 1= =~12; Beset[12] := 12;
Beset[3] := ~10; Beset[11] := 10}
Beset[4] = -9; Beset [10] = 4;
Beset[5] := -6; Beset [3] :1= 6;
Beset[6] := =3; Beset [8] 1= 3;
Beset [7] := 0;
for by3 := -11 to 11 do {gqueens cutside}
if randQEb{-3,-16,by3} then
for by2z = ~12 to 12 do

1f randOKb{~2,~15,by2} then
for bxl := ~11 to 11 do
if randOKn(-1,bxl,-16} then’
for bx0 = -12 to 12 do
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if randokb (0,bx0,~15) then if ryeuitgesorteer then
for x1 = 1-j to j-1 do [queens insidet}
if RandOK{l,x1} then
for x2 = 1-3 to j~1 do
if Rand0OK(2,x2) then
for x3 := 1-3 to -1 do
if RandOK(3,x3) then
for x4 = 1-j to j-1 do
if RandOK{4,x4}) then
for x5 = 1-j to J~1 do
1f RandQ¥X{5,x5) then
for x6 := 1-j to j~1 do
if RandOK{6,x6) then
for x7 := 1~3 to j-1 do
if RandQK{7,%x7) then
for %8 = 1-3 to j-1 do
if RandOK(8,x8) then
for x9 := 1-j to Jj-1 do
if RandCK ({93, x9) then
for x10 := 1-j to j-1 do
if RandOK({10,x10} then
for x11 := 1-j to j-1 do
if RandoK (11,x11} then
begin
count := count+l;

write({count,’. "});
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for ¢ := l-buiteq to gamma-buiteq do
write{queenXic]:4,queenY[c]:3):
writeln;
end;
writeln({'Total= ', count);
readln;

END.
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BER, 59
biggest empty ring, 59
body, 21
relaxed, 22
restricted, 22
body diagonal, 21

closed neighbourhood, 1
care, 21

refaxed, 22

restricted, 22
core diagonal, 21

d-diagonal, 16
DCE 57
diagonal, 5
main, 5
negative, 5
positive, 5
distance, 59
dominating set, 1
(i, 7)-dominating set, 19
of the queens graph, 2
domination number
independent, 2
of a graph, 2
double column placement, 57

edge, 5

of hexagonal board, 55
edge dominating set, 39
edge square, 5
empty cell, 55
empty diagonal, 19
even (row, column), 15
even diagonal, 16
even queen, 16
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even square, 4
even-even queen, 16
even-even square, 15
even-odd queen, 16
even-odd square, 15

independent domination number

of a graph, 2
independent set, 1

of queens, 2
iredundance number, 2
irredundant

maximal, 2

set, 1

vertex, 1
iredundant set

of queens, 2

line
on hezagonal board, 55

meet (rows, diagonals), 5

neighbour
private, 1

neighbourhood
closed: 1
open, 1
ptivate, 1

occupied, 5

odd (row, column), 15
odd diagonal, 16

ndd queen, 16

odd square, 4
odd-even queen, 16
odd-even square, 15
odd-odd queen, 16



odd-odd square, 15
open cell

of hexagonal board, 55
open cell or square, 69
open neighbourhood, 1

pn-destroyer, 69

pn-less, 69

point on a diagonal, 16
private neighbour, 1
private neighbourhood, 1

radius (of a queen), 41
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relaxed

body, 22

core, 22
restricted

body, 22

core, 22
restricted care, 21
ring, 58

s-diagonal, 16

unoccupied, 5



