2,107 research outputs found

    Irreducible triangulations of surfaces with boundary

    Get PDF
    A triangulation of a surface is irreducible if no edge can be contracted to produce a triangulation of the same surface. In this paper, we investigate irreducible triangulations of surfaces with boundary. We prove that the number of vertices of an irreducible triangulation of a (possibly non-orientable) surface of genus g>=0 with b>=0 boundaries is O(g+b). So far, the result was known only for surfaces without boundary (b=0). While our technique yields a worse constant in the O(.) notation, the present proof is elementary, and simpler than the previous ones in the case of surfaces without boundary

    Generating families of surface triangulations. The case of punctured surfaces with inner degree at least 4

    Get PDF
    We present two versions of a method for generating all triangulations of any punctured surface in each of these two families: (1) triangulations with inner vertices of degree at least 4 and boundary vertices of degree at least 3 and (2) triangulations with all vertices of degree at least 4. The method is based on a series of reversible operations, termed reductions, which lead to a minimal set of triangulations in each family. Throughout the process the triangulations remain within the corresponding family. Moreover, for the family (1) these operations reduce to the well-known edge contractions and removals of octahedra. The main results are proved by an exhaustive analysis of all possible local configurations which admit a reduction.Comment: This work has been partially supported by PAI FQM-164; PAI FQM-189; MTM 2010-2044

    Some Triangulated Surfaces without Balanced Splitting

    Full text link
    Let G be the graph of a triangulated surface Σ\Sigma of genus g≥2g\geq 2. A cycle of G is splitting if it cuts Σ\Sigma into two components, neither of which is homeomorphic to a disk. A splitting cycle has type k if the corresponding components have genera k and g-k. It was conjectured that G contains a splitting cycle (Barnette '1982). We confirm this conjecture for an infinite family of triangulations by complete graphs but give counter-examples to a stronger conjecture (Mohar and Thomassen '2001) claiming that G should contain splitting cycles of every possible type.Comment: 15 pages, 7 figure
    • …
    corecore