5 research outputs found

    Iris Liveness Detection Competition (LivDet-Iris) -- The 2020 Edition

    Full text link
    Launched in 2013, LivDet-Iris is an international competition series open to academia and industry with the aim to assess and report advances in iris Presentation Attack Detection (PAD). This paper presents results from the fourth competition of the series: LivDet-Iris 2020. This year's competition introduced several novel elements: (a) incorporated new types of attacks (samples displayed on a screen, cadaver eyes and prosthetic eyes), (b) initiated LivDet-Iris as an on-going effort, with a testing protocol available now to everyone via the Biometrics Evaluation and Testing (BEAT)(https://www.idiap.ch/software/beat/) open-source platform to facilitate reproducibility and benchmarking of new algorithms continuously, and (c) performance comparison of the submitted entries with three baseline methods (offered by the University of Notre Dame and Michigan State University), and three open-source iris PAD methods available in the public domain. The best performing entry to the competition reported a weighted average APCER of 59.10\% and a BPCER of 0.46\% over all five attack types. This paper serves as the latest evaluation of iris PAD on a large spectrum of presentation attack instruments.Comment: 9 pages, 3 figures, 3 tables, Accepted for presentation at International Joint Conference on Biometrics (IJCB 2020

    Detection of Iris Presentation Attacks Using Feature Fusion of Thepade's Sorted Block Truncation Coding with Gray-Level Co-Occurrence Matrix Features.

    Full text link
    Iris biometric detection provides contactless authentication, preventing the spread of COVID-19-like contagious diseases. However, these systems are prone to spoofing attacks attempted with the help of contact lenses, replayed video, and print attacks, making them vulnerable and unsafe. This paper proposes the iris liveness detection (ILD) method to mitigate spoofing attacks, taking global-level features of Thepade's sorted block truncation coding (TSBTC) and local-level features of the gray-level co-occurrence matrix (GLCM) of the iris image. Thepade's SBTC extracts global color texture content as features, and GLCM extracts local fine-texture details. The fusion of global and local content presentation may help distinguish between live and non-live iris samples. The fusion of Thepade's SBTC with GLCM features is considered in experimental validations of the proposed method. The features are used to train nine assorted machine learning classifiers, including naïve Bayes (NB), decision tree (J48), support vector machine (SVM), random forest (RF), multilayer perceptron (MLP), and ensembles (SVM + RF + NB, SVM + RF + RT, RF + SVM + MLP, J48 + RF + MLP) for ILD. Accuracy, precision, recall, and F-measure are used to evaluate the performance of the projected ILD variants. The experimentation was carried out on four standard benchmark datasets, and our proposed model showed improved results with the feature fusion approach. The proposed fusion approach gave 99.68% accuracy using the RF + J48 + MLP ensemble of classifiers, immediately followed by the RF algorithm, which gave 95.57%. The better capability of iris liveness detection will improve human-computer interaction and security in the cyber-physical space by improving person validation

    Improving less constrained iris recognition

    Get PDF
    The iris has been one of the most reliable biometric traits for automatic human authentication due to its highly stable and distinctive patterns. Traditional iris recognition algorithms have achieved remarkable performance in strictly constrained environments, with the subject standing still and with the iris captured at a close distance. This enables the wide deployment of iris recognition systems in applications such as border control and access control. However, in less constrained environments with the subject at-a-distance and on-the-move, the iris recognition performance is significantly deteriorated, since such environments induce noise and degradations in iris captures. This restricts the applicability and practicality of iris recognition technology for some real-world applications with more open capturing conditions, such as surveillance, forensic and mobile device security applications. Therefore, robust algorithms for less constrained iris recognition are desirable for the wider deployment of iris recognition systems. This thesis focuses on improving less constrained iris recognition. Five methods are proposed to improve the performance of different stages in less constrained iris recognition. First, a robust iris segmentation algorithm is developed using l1-norm regression and model selection. This algorithm formulates iris segmentation as robust l1-norm regression problems. To further enhance the robustness, multiple segmentation results are produced by applying l1-norm regression to different models, and a model selection technique is used to select the most reliable result. Second, an iris liveness detection method using regional features is investigated. This method seeks not only low level features, but also high level feature distributions for more accurate and robust iris liveness detection. Third, a signal-level information fusion algorithm is presented to mitigate the noise in less constrained iris captures. With multiple noisy iris captures, this algorithm proposes a sparse-error low rank matrix factorization model to separate noiseless iris structures and noise. The noiseless structures are preserved and emphasised during the fusion process, while the noise is suppressed, in order to obtain more reliable signals for recognition. Fourth, a method to generate optimal iris codes is proposed. This method considers iris code generation from the perspective of optimization. It formulates traditional iris code generation method as an optimization problem; an additional objective term modelling the spatial correlations in iris codes is applied to this optimization problem to produce more effective iris codes. Fifth, an iris weight map method is studied for robust iris matching. This method considers both intra-class bit stability and inter-class bit discriminability in iris codes. It emphasises highly stable and discriminative bits for iris matching, enhancing the robustness of iris matching. Comprehensive experimental analysis are performed on benchmark datasets for each of the above methods. The results indicate that the presented methods are effective for less constrained iris recognition, generally improving state-of-the-art performance

    Iris liveness detection using regional features

    No full text
    In this paper, we exploit regional features for iris liveness detection. Regional features are designed based on the relationship of the features in neighbouring regions. They essentially capture the feature distribution among neighbouring regions. We construct the regional features via two models: spatial pyramid and relational measure which seek the feature distributions in regions with varying size and shape respectively. The spatial pyramid model extracts features from coarse to fine grid regions, and, it models a local to global feature distribution. The local distribution captures the local feature variations while the global distribution includes the information that is more robust to translational transform. The relational measure is based on a feature-level convolution operation defined in this paper. By varying the shape of the convolution kernel, we are able to obtain the feature distribution in regions with different shapes. To combine the feature distribution information in regions with varying size and shape, we fuse the results based on the two models at the score level. Experimental results on benchmark datasets demonstrate that the proposed method achieves an improved performance compared to state-of-the-art features
    corecore