3,508 research outputs found

    VANET Applications: Hot Use Cases

    Get PDF
    Current challenges of car manufacturers are to make roads safe, to achieve free flowing traffic with few congestions, and to reduce pollution by an effective fuel use. To reach these goals, many improvements are performed in-car, but more and more approaches rely on connected cars with communication capabilities between cars, with an infrastructure, or with IoT devices. Monitoring and coordinating vehicles allow then to compute intelligent ways of transportation. Connected cars have introduced a new way of thinking cars - not only as a mean for a driver to go from A to B, but as smart cars - a user extension like the smartphone today. In this report, we introduce concepts and specific vocabulary in order to classify current innovations or ideas on the emerging topic of smart car. We present a graphical categorization showing this evolution in function of the societal evolution. Different perspectives are adopted: a vehicle-centric view, a vehicle-network view, and a user-centric view; described by simple and complex use-cases and illustrated by a list of emerging and current projects from the academic and industrial worlds. We identified an empty space in innovation between the user and his car: paradoxically even if they are both in interaction, they are separated through different application uses. Future challenge is to interlace social concerns of the user within an intelligent and efficient driving

    The Emerging Internet of Things Marketplace From an Industrial Perspective: A Survey

    Get PDF
    The Internet of Things (IoT) is a dynamic global information network consisting of internet-connected objects, such as Radio-frequency identification (RFIDs), sensors, actuators, as well as other instruments and smart appliances that are becoming an integral component of the future internet. Over the last decade, we have seen a large number of the IoT solutions developed by start-ups, small and medium enterprises, large corporations, academic research institutes (such as universities), and private and public research organisations making their way into the market. In this paper, we survey over one hundred IoT smart solutions in the marketplace and examine them closely in order to identify the technologies used, functionalities, and applications. More importantly, we identify the trends, opportunities and open challenges in the industry-based the IoT solutions. Based on the application domain, we classify and discuss these solutions under five different categories: smart wearable, smart home, smart, city, smart environment, and smart enterprise. This survey is intended to serve as a guideline and conceptual framework for future research in the IoT and to motivate and inspire further developments. It also provides a systematic exploration of existing research and suggests a number of potentially significant research directions.Comment: IEEE Transactions on Emerging Topics in Computing 201

    Framework to Enhance Teaching and Learning in System Analysis and Unified Modelling Language

    Get PDF
    Cowling, MA ORCiD: 0000-0003-1444-1563; Munoz Carpio, JC ORCiD: 0000-0003-0251-5510Systems Analysis modelling is considered foundational for Information and Communication Technology (ICT) students, with introductory and advanced units included in nearly all ICT and computer science degrees. Yet despite this, novice systems analysts (learners) find modelling and systems thinking quite difficult to learn and master. This makes the process of teaching the fundamentals frustrating and time intensive. This paper will discuss the foundational problems that learners face when learning Systems Analysis modelling. Through a systematic literature review, a framework will be proposed based on the key problems that novice learners experience. In this proposed framework, a sequence of activities has been developed to facilitate understanding of the requirements, solutions and incremental modelling. An example is provided illustrating how the framework could be used to incorporate visualization and gaming elements into a Systems Analysis classroom; therefore, improving motivation and learning. Through this work, a greater understanding of the approach to teaching modelling within the computer science classroom will be provided, as well as a framework to guide future teaching activities

    Role of Modern Technologies and Internet of things in the field of Solid Waste Management

    Get PDF
    The process of handling solid waste becomes complex and tedious due to the urbanization and industrialization of the most developing and developed countries. These solid waste issues if it is not addressed properly it affects ecosystem and environment. There is a possibility of many health-oriented issues especially during the pandemic period covid-19. Most of the human beings are struggling with respiratory pulmonary diseases, asthma caused by these solid wastes. Most of the governments are also spending huge amount of money for labors, devices and some technologies to tackle these solid waste issues. There is also an opportunity for the government to generate revenue from these solid wastes by properly sorting these waste into recyclable, nonrecyclable and bio-degradable wastes. But when humans are involved in sorting these waste it will cause some diseases and hygienic problems. So,in order to address the above said issues in this work the role of modern technologies, algorithms and some Internet of things (IoT) methods are discussed. Implementing these technologies in the future will save huge amount of money spent by the government for the solid waste management activities

    A Smart Waste Management System Framework Using IoT and LoRa for Green City Project

    Get PDF
    Waste management is a pressing concern for society, requiring substantial labor resources and impacting various social aspects. Green cities strive for achieving a net zero-carbon footprint, including efficient waste management. The waste management system deals with three problems that are interrelated: a) the timely checking of the status of bins to prevent overflow; b) checking the precise location of bins; and c) finding the optimal route to the filled bins. The existing systems fail to satisfy all three problem areas with a single solution. To track the overflow of the bin, the proposed model uses ultrasonic sensors, which are complemented with LoRa to transmit the exact location of the bins in a real-time environment. The existing models are not that efficient at calculating the exact bin-filled status along with the precise location of the bins. The Floyd-Warshall algorithm in the proposed model optimizes waste collection using the Floyd-Warshall algorithm to determine the shortest path. Leveraging low-cost IoT technologies, specifically LoRa modules for data transfer, our solution offers benefits such as simplicity, affordability, and ease of replacement. By employing the Floyd-Warshall algorithm with a time complexity of O (n^3), our method efficiently determines the most optimal waste pickup route, saving time and resources. This study presents a smart waste management solution utilising Arduino UNO microcontrollers, ultrasonic sensors, and LoRaWAN to measure waste levels accurately. The proposed strategy aims to create clean and pollution-free cities by addressing the problem of waste distribution caused by poor collection techniques

    Distributed Hybrid Simulation of the Internet of Things and Smart Territories

    Full text link
    This paper deals with the use of hybrid simulation to build and compose heterogeneous simulation scenarios that can be proficiently exploited to model and represent the Internet of Things (IoT). Hybrid simulation is a methodology that combines multiple modalities of modeling/simulation. Complex scenarios are decomposed into simpler ones, each one being simulated through a specific simulation strategy. All these simulation building blocks are then synchronized and coordinated. This simulation methodology is an ideal one to represent IoT setups, which are usually very demanding, due to the heterogeneity of possible scenarios arising from the massive deployment of an enormous amount of sensors and devices. We present a use case concerned with the distributed simulation of smart territories, a novel view of decentralized geographical spaces that, thanks to the use of IoT, builds ICT services to manage resources in a way that is sustainable and not harmful to the environment. Three different simulation models are combined together, namely, an adaptive agent-based parallel and distributed simulator, an OMNeT++ based discrete event simulator and a script-language simulator based on MATLAB. Results from a performance analysis confirm the viability of using hybrid simulation to model complex IoT scenarios.Comment: arXiv admin note: substantial text overlap with arXiv:1605.0487

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    The digitisation of food manufacturing to reduce waste – Case study of a ready meal factory

    Get PDF
    Generation of food waste (FW) continues to be a global challenge and high on the political agenda. One of the main reasons for its generation is the absence of detailed data on the amount, timing and reasons for created waste. This paper discusses the design, the application and investigates the Internet of Things (IoT) based FW monitoring system to capture waste data during manufacturing in real-time and make it available to all the stakeholders in a food supply chain (FSC). A case study of ready-meal factory comprises of design and architecture for tracking FW including both hardware and software, its implementation in the factory and the positive data-driven results achieved. The case study demonstrates the benefits of digital FW tracking system including the FW reduction of 60.7%, better real-time visibility of the FW hotspots, reasons for waste generations, reliable data, operational improvements and employee behavioural transformation. Although the system replaced the paper-based manual system of tracking FW in the factory, it still needed human input to confirm the waste and was prone to human errors. Overall, the implementation of an IoT-based FW tracking system resulted in a reduction of FW and created a positive environmental and financial impact
    • …
    corecore