12,335 research outputs found
Ionospheric response to the 2009 sudden stratospheric warming over the equatorial, low, and middle latitudes in the South American sector
The present study investigates the ionospheric total electron content (TEC) and F-layer response in the Southern Hemisphere equatorial, low, and middle latitudes due to major sudden stratospheric warming (SSW) event, which took place during January-February 2009 in the Northern Hemisphere. In this study, using 17 ground-based dual frequency GPS stations and two ionosonde stations spanning latitudes from 2.8°N to 53.8°S, longitudes from 36.7°W to 67.8°W over the South American sector, it is observed that the ionosphere was significantly disturbed by the SSW event from the equator to the midlatitudes. During day of year 26 and 27 at 14:00 UT, the TEC was two times larger than that observed during average quiet days. The vertical TEC at all 17 GPS and two ionosonde stations shows significant deviations lasting for several days after the SSW temperature peak. Using one GPS station located at Rio Grande (53.8°S, 67.8°W, midlatitude South America sector), it is reported for the first time that the midlatitude in the Southern Hemisphere was disturbed by the SSW event in the Northern Hemisphere.Fil: Fagundes, P. R.. Universidade do Vale do Paraíba; BrasilFil: Goncharenko, L. P.. Massachusetts Institute of Technology; Estados UnidosFil: De Abreu, A. J.. Universidade do Vale do Paraíba; BrasilFil: Venkatesh, K.. Universidade do Vale do Paraíba; BrasilFil: Pezzopane, M.. Istituto Nazionale Di Geofisica E Vulcanologia; ItaliaFil: De Jesus, R.. Universidade do Vale do Paraíba; BrasilFil: Gende, Mauricio Alfredo. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Coster, A. J.. Massachusetts Institute of Technology; Estados UnidosFil: Pillat, V. G.. Universidade do Vale do Paraíba; Brasi
Wavelet analysis of the ionospheric response at mid-latitudes during the April 200 storm using magnetograms and vTEC from GPS
In this work we pursue the idea of computing a parameter that allows us to estimate the local ionospheric response to a geospheric event that triggers an ionospheric storm. For that, wavelet technique has been chosen because of its ability to analyze non-stationary signals. The advantage of the time-frequency analysis method called Wavelet Transform resides in providing information not only about the frequencies of the event but also about its location in the time series. Specifically, we compute the Scale Average Wavelet Power (SAWP) of two parameters that describe the local geomagnetic field variation at the Earth surface caused by a geospheric storm and ionospheric response to the storm event. In particular, we propose the time delay between the maximum values of SAWP applied to the vTEC (vertical Total Electron Content) and the horizontal component of the geomagnetic field (H) variations as parameters to characterize the local behavior of the ionospheric storm. We applied the parameter to the geomagnetic and ionospheric disturbances caused by a coronal mass ejection (CME) that took place on April 4, 2000. We used vTEC values computed from GPS observations and H at the surface of the Earth, measured in stations near to each GPS station chosen. The vTEC values used came from the GPS permanent stations belonging to the global IGS (International GNSS Service) network. We chose stations located at magnetic mid-latitudes. Moreover, three-longitude bands representing the ionospheric behavior at different local times (LT) were studied. Because the April 2000 storm has been extensively studied for many authors, the results are compared with those in the literature and we found a very good agreement as expected.En este trabajo perseguimos la idea de estimar un parámetro que nos permita calcular la respuesta ionosférica local a un evento geosférico desencadenante de una tormenta ionosférica. Para ello, se eligió la aplicación de la técnica ondeleta debido a su capacidad para analizar señales no estacionarias. La ventaja del método de análisis en tiempo y frecuencia llamada Transformada Ondeleta reside en el hecho de que provee información, no sólo acerca de las frecuencias del evento, sino también sobre su ubicación en la serie de tiempo. En concreto, se calcula el promedio por escalas de la potencia de la transformada ondeleta (SWAP, de su sigla en inglés Scale Average Wavelet Power) para dos parámetros que describen la respuesta local de la magnetosfera y la ionosfera a una tormenta. En particular, se propone el retraso de tiempo entre los valores máximos de SAWP aplicadas al vTEC (Contenido Electrónico Total en dirección Vertical) y la componente horizontal del campo geomagnético (H), como parámetros cuyas variaciones caracterizan el comportamiento local de la tormenta ionosférica. El parámetro propuesto se aplicó a las perturbaciones geomagnética e ionosférica causadas por una eyección de masa coronal (CME, Coronal Mass Ejection), que tuvo lugar el 4 de abril de 2000. Se utilizaron valores vTEC calculados a partir de las observaciones GPS y H en la superficie de la Tierra, medida en las estaciones cercanas a cada estación de GPS elegida. Los valores de vTEC utilizados provinieron de las estaciones GPS permanentes que pertenecen a la red del servicio internacional IGS (International GNSS Service). Entre todas, elegimos estaciones situadas en latitudes magnéticas medias. Por otra parte, estudiamos tres bandas de longitud que representan el comportamiento de la ionosfera a distintas horas locales (LT). Debido a que la tormenta de abril de 2000 ha sido ampliamente estudiada por muchos autores, los resultados se comparan con los de la literatura y nos encontramos con un muy buen acuerdo entre los datos publicados y nuestros resultados, tal y como se esperaba.Fil: Fernandez, Laura Isabel. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Meza, Amalia Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Van Zele, Maria Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias Geológicas; Argentin
Optimal economic and emission dispatch of photovoltaic integrated power system using firefly algorithm
The main purpose of Economic Load Dispatch (ELD) is to determine the optimal output of generating units to meet the power demand at lowest possible cost and subjected to the operational constraints. Various ELD optimization methods have been developed in order to deal with the challenges of continuous and sustainable power at optimal cost. The deficiency of fossil fuel reserve and rapid increase of fuel prices to generate electricity has encouraged the use of Renewable Energy (RE). Furthermore, concerns over environmental pollution also become a factor to incorporate the RE and fossil fuel in generating electricity. This project propose the Firefly Algorithm (FA) to solve Economic and Emission Load Dispatch (EELD) problems that consists of photovoltaic systems. The FA algorithm is used to determine the optimal cost and emission levels of power generation. The test case considered in this project is Static Combined Economic and Emission Dispatch (SCEED) that been simulated for each hour. The test system with 6 units of thermal generator and 13 units of PV generator are used to optimize SCEED problem by using FA. The Weight Sum Method (WSM) approach is used to determine the best compromise solution among the cost and emission. It found that FA can provide the fast convergence in finding the global minima value. It can be concluded that FA can solve the problem of economic and emission dispatch accurately
Role of gravity waves in vertical coupling during sudden stratospheric warmings
Gravity waves are primarily generated in the lower atmosphere, and can reach
thermospheric heights in the course of their propagation. This paper reviews
the recent progress in understanding the role of gravity waves in vertical
coupling during sudden stratospheric warmings. Modeling of gravity wave effects
is briefly reviewed, and the recent developments in the field are presented.
Then, the impact of these waves on the general circulation of the upper
atmosphere is outlined. Finally, the role of gravity waves in vertical coupling
between the lower and the upper atmosphere is discussed in the context of
sudden stratospheric warmings.Comment: Accepted for publication in Geoscience Letter
Global distribution of ionospheric scintillations from the Real-Time GPS ROTI
A global real-time monitoring system has been implemented in the frame of ESA-ESTEC/EGNOS-POfunded project MONITOR. It is based on world-wide GNSS datastreams distributed by means of NTRIP and provides multiple ionospheric indices and products to the scientific community and industry. In particular, the Rate Of Total Electron Content Index (ROTI) proxy, which is correlated with scintillation activity and has been running for several years for real-time detection and monitoring.
It shall also be pointed out that the multiple products, also aiming at the identification of Travelling Ionospheric Disturbances (TIDs), Solar Flares overionization, among other ionospheric perturbations, are useful to properly characterize scenarios where these could occur simultaneously to scintillations. In addition, there is also a new proxy suitable for radio-occultation GNSS measurements, named OSPI.
In this context, a climatological ionospheric scintillation study has been conducted in different latitudinal regions from the UPC-IonSAT database of global ROTI. For this purpose, we have obtained results from several receivers in 30-degree latitudinal strips and distinguishing between North- and South-Hemisphere locations.Postprint (published version
A Network of Portable, Low-Cost, X-Band Radars
Radar is a unique tool to get an overview on the weather situation, given its high spatio- temporal resolution. Over 60 years, researchers have been investigating ways for obtaining the best use of radar. As a result we often find assurances on how much radar is a useful tool, and it is! After this initial statement, however, regularly comes a long list on how to increase the accuracy of radar or in what direction to move for improving it. Perhaps we should rather ask: is the resulting data good enough for our application? The answers are often more complicated than desired. At first, some people expect miracles. Then, when their wishes are disappointed, they discard radar as a tool: both attitudes are wrong; radar is a unique tool to obtain an excellent overview on what is happening: when and where it is happening. At short ranges, we may even get good quantitative data. But at longer ranges it may be impossible to obtain the desired precision, e.g. the precision needed to alert people living in small catchments in mountainous terrain. We would have to set the critical limit for an alert so low that this limit would lead to an unacceptable rate of false alarm
Electron density retrieval from truncated Radio Occultation GNSS data
This paper summarizes the definition and validation of two complementary new strategies, to invert incomplete Global Navigation Satellite System Radio-Occultation (RO) ionospheric measurements, such as the ones to be provided by the future EUMETSAT Polar System Second Generation. It will provide RO measurements with impact parameter much below the Low Earth Orbiters' height (817 km): from 500 km down approximately. The first presented method to invert truncated RO data is denoted as Abel-VaryChap Hybrid modeling from topside Incomplete Global Navigation Satellite System RO data, based on simple First Principles, very precise, and well suited for postprocessing. And the second method is denoted as Simple Estimation of Electron density profiles from topside Incomplete RO data, is less precise, but yields very fast estimations, suitable for Near Real-Time determination. Both techniques will be described and assessed with a set of 546 representative COSMIC/FORMOSAT-3 ROs, with relative errors of 7% and 11% for Abel-VaryChap Hybrid modeling from topside Incomplete Global Navigation Satellite System RO data and Simple Estimation of Electron density profiles from topside Incomplete RO data, respectively, with 20 min and 15 s, respectively, of computational time per occultation in our Intel I7 PC.Peer ReviewedPostprint (published version
- …
