561 research outputs found

    Investigation on the reliability of earthquake prediction based on ionospheric electron content variation

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Graduate School of Engineering and Science of Bilkent Univ., 2013.Thesis (Master's) -- Bilkent University, 2013.Includes bibliographical references leaves 49-53.Ionosphere region of Earth’s upper atmosphere ranging from 90 km to 1000 km altitude, has a significant effect on military and civilian communications, satellite communications and positioning systems. Solar, geomagnetic, gravitational and seismic activities cause variations in the electron distribution of the atmosphere. The number of electrons within a vertical column of 1 m2 cross section, which is called as Total Electron Content (TEC), is a measurable feature of the ionosphere that provides valuable information about the ionosphere. TEC can be measured fast and accurately by using the phase difference between transmitted satellite positioning signals such as in the Global Positioning System (GPS). To investigate the reliability of earthquake prediction based on detection of local ionospheric anomalies, TEC measurements obtained from a network of GPS receivers over a period of 2 years in 2010 and 2011 are used to generate detection signals. For a day of interest, after selecting a receiver station surrounding GPS stations that are located within 150 km of the chosen station used to estimate TEC measurements at the chosen station. In one of the proposed techniques, detection of ionospheric anomalies is based on distance between measured TEC and its estimate. Detection threshold is obtained based on statistical variation of this distance for the days with insignificant seismic activities. Also, another detection technique based on temporal variation of TEC measurements is proposed. Both individual and fused detection performances of these techniques are investigated for a given level of false alarms. It is observed that the fused detection has superior performance and able to detect 15 out of 23 earthquakes of magnitude larger than 5 in Richter scale while generating 8 false alarms.Akyol, Ali AlpM.S

    Investigation on the reliability of earthquake prediction based on ionospheric electron content variation

    Get PDF
    Due to lack of statistical reliability analysis of earthquake precursors, earthquake prediction from ionospheric parameters is considered to be controversial. In this study, reliability of earthquake prediction is investigated using dense TEC data estimated from the Turkish National Permanent GPS Network (TNPGN- Active). © 2013 ISIF ( Intl Society of Information Fusi

    Precursory worldwide signatures of earthquake occurrences on Swarm satellite data

    Get PDF
    The study of the preparation phase of large earthquakes is essential to understand the physical processes involved, and potentially useful also to develop a future reliable short-term warning system. Here we analyse electron density and magnetic field data measured by Swarm three-satellite constellation for 4.7 years, to look for possible in-situ ionospheric precursors of large earthquakes to study the interactions between the lithosphere and the above atmosphere and ionosphere, in what is called the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC). We define these anomalies statistically in the whole space-time interval of interest and use a Worldwide Statistical Correlation (WSC) analysis through a superposed epoch approach to study the possible relation with the earthquakes. We find some clear concentrations of electron density and magnetic anomalies from more than two months to some days before the earthquake occurrences. Such anomaly clustering is, in general, statistically significant with respect to homogeneous random simulations, supporting a LAIC during the preparation phase of earthquakes. By investigating different earthquake magnitude ranges, not only do we confirm the well-known Rikitake empirical law between ionospheric anomaly precursor time and earthquake magnitude, but we also give more reliability to the seismic source origin for many of the identified anomalies.Publishedid 202872A. Fisica dell'alta atmosferaJCR Journa

    Ionosphere Monitoring with Remote Sensing

    Get PDF
    This book focuses on the characterization of the physical properties of the Earth’s ionosphere, contributing to unveiling the nature of several processes responsible for a plethora of space weather-related phenomena taking place in a wide range of spatial and temporal scales. This is made possible by the exploitation of a huge amount of high-quality data derived from both remote sensing and in situ facilities such as ionosondes, radars, satellites and Global Navigation Satellite Systems receivers

    Ionospheric anomalies detected by ionosonde and possibly related to crustal earthquakes in Greece

    Get PDF
    Ionosonde data and crustal earthquakes with magnitude M > 6:0 observed in Greece during the 2003–2015 period were examined to check if the relationships obtained earlier between precursory ionospheric anomalies and earthquakes in Japan and central Italy are also valid for Greek earthquakes. The ionospheric anomalies are identified on the observed variations of the sporadic E-layer parameters (h0Es, foEs) and foF2 at the ionospheric station of Athens. The corresponding empirical relationships between the seismoionospheric disturbances and the earthquake magnitude and the epicentral distance are obtained and found to be similar to those previously published for other case studies. The large lead times found for the ionospheric anomalies occurrence may confirm a rather long earthquake preparation period. The possibility of using the relationships obtained for earthquake prediction is finally discussed.Published361–3712A. Fisica dell'alta atmosferaJCR Journa

    Optimal Setting of Earthquake-Related Ionospheric TEC (Total Electron Content) Anomalies Detection Methods: Long-Term Validation over the Italian Region

    Get PDF
    Over the last decade, thanks to the availability of historical satellite observations that have begun to be significantly large and thanks to the exponential growth of artificial intelligence techniques, many advances have been made in the detection of geophysical parameters such as seismic-related anomalies. In this study, the variations of the ionospheric Total Electron Content (TEC), one of the main parameters historically proposed as a seismic-connected indicator, are analyzed. To make a statistically robust analysis of the complex phenomena involved, we propose a completely innovative machine-learning approach developed in the R programming language. Through this approach, an optimal setting of the multitude of methodological inputs currently proposed for the detection of ionospheric anomalies is performed. The setting is optimized by analyzing, for the first time, multi-year—mostly twenty-year—time series of TEC satellite data measured by global navigation satellite systems (GNSS) over the Italian region, matched with the corresponding multi-year time series of seismic events. Seismic events including all the countries of the Mediterranean area, up to Turkey, are involved in the analysis. Tens of thousands of possible combinations of input methodological parameters are simulated and classified according to pre-established criteria. Several inputs examined return clear results. These results combined with each other highlight the presence of anomalous seismic-related sequences that have an extremely low probability of having been detected randomly (up to 2 out of 1 million). The anomalies identified represent the most anomalous behaviors of the TEC recorded during the entire period under investigation (e.g., 20 years). Some of the main conclusions are that, at mid-latitudes, ① the detection of seismic-TEC anomalies can be more efficient looking for punctual rather than persistent phenomena; ② the optimal thresholds for the identification of co-seismic anomalies can assume different values depending on type of anomaly (positive or negative) and type of observation; ③ single GNSS receiver data can be useful for capturing local earthquake-ionospheric effects and Global Ionospheric Maps (GIM) data can be functional in detecting large-scale earthquake-ionospheric effects; ④ earthquakes deeper than 50 km are less likely to affect the ionosphere

    BDS GNSS for Earth Observation

    Get PDF
    For millennia, human communities have wondered about the possibility of observing phenomena in their surroundings, and in particular those affecting the Earth on which they live. More generally, it can be conceptually defined as Earth observation (EO) and is the collection of information about the biological, chemical and physical systems of planet Earth. It can be undertaken through sensors in direct contact with the ground or airborne platforms (such as weather balloons and stations) or remote-sensing technologies. However, the definition of EO has only become significant in the last 50 years, since it has been possible to send artificial satellites out of Earth’s orbit. Referring strictly to civil applications, satellites of this type were initially designed to provide satellite images; later, their purpose expanded to include the study of information on land characteristics, growing vegetation, crops, and environmental pollution. The data collected are used for several purposes, including the identification of natural resources and the production of accurate cartography. Satellite observations can cover the land, the atmosphere, and the oceans. Remote-sensing satellites may be equipped with passive instrumentation such as infrared or cameras for imaging the visible or active instrumentation such as radar. Generally, such satellites are non-geostationary satellites, i.e., they move at a certain speed along orbits inclined with respect to the Earth’s equatorial plane, often in polar orbit, at low or medium altitude, Low Earth Orbit (LEO) and Medium Earth Orbit (MEO), thus covering the entire Earth’s surface in a certain scan time (properly called ’temporal resolution’), i.e., in a certain number of orbits around the Earth. The first remote-sensing satellites were the American NASA/USGS Landsat Program; subsequently, the European: ENVISAT (ENVironmental SATellite), ERS (European Remote-Sensing satellite), RapidEye, the French SPOT (Satellite Pour l’Observation de laTerre), and the Canadian RADARSAT satellites were launched. The IKONOS, QuickBird, and GeoEye-1 satellites were dedicated to cartography. The WorldView-1 and WorldView-2 satellites and the COSMO-SkyMed system are more recent. The latest generation are the low payloads called Small Satellites, e.g., the Chinese BuFeng-1 and Fengyun-3 series. Also, Global Navigation Satellite Systems (GNSSs) have captured the attention of researchers worldwide for a multitude of Earth monitoring and exploration applications. On the other hand, over the past 40 years, GNSSs have become an essential part of many human activities. As is widely noted, there are currently four fully operational GNSSs; two of these were developed for military purposes (American NAVstar GPS and Russian GLONASS), whilst two others were developed for civil purposes such as the Chinese BeiDou satellite navigation system (BDS) and the European Galileo. In addition, many other regional GNSSs, such as the South Korean Regional Positioning System (KPS), the Japanese quasi-zenital satellite system (QZSS), and the Indian Regional Navigation Satellite System (IRNSS/NavIC), will become available in the next few years, which will have enormous potential for scientific applications and geomatics professionals. In addition to their traditional role of providing global positioning, navigation, and timing (PNT) information, GNSS navigation signals are now being used in new and innovative ways. Across the globe, new fields of scientific study are opening up to examine how signals can provide information about the characteristics of the atmosphere and even the surfaces from which they are reflected before being collected by a receiver. EO researchers monitor global environmental systems using in situ and remote monitoring tools. Their findings provide tools to support decision makers in various areas of interest, from security to the natural environment. GNSS signals are considered an important new source of information because they are a free, real-time, and globally available resource for the EO community

    New applications and challenges of GNSS variometric approach

    Get PDF
    Global Navigation Satellite Systems (GNSS) are nowadays widely used in several technical and scientific activities. Since the early stages of development (mid 1980 s), given the high level of accuracy achieved in determining the coordinates of the receiver, it became clear that the extensive deployment of GPS stations all over the world would have improved many tasks in geodesy and geodynamics. The use of GNSS signals is now not only limited to the estimation of the receiver's position, but it has eventually become a key instrument for ionospheric and tropospheric remote sensing studies, and for soil features (GNSS reflectometry). In particular, GNSS can be used to monitor the ionosphere at different time and space scales. On a global scale, GNSS signals are used to generate Global Ionosphere Maps (GIM) by measuring the total electron content from stations located around the world. On a regional scale, the same signals can be used to detect fast ionospheric disturbances, including those generated by natural hazards, such as tsunami and earthquakes. %For these reasons, real-time GNSS applications became particularly relevant in a number of different scientific fields. The Variometric Approach is a processing algorithm for GNSS observations which allow a GNSS receiver to provide valuable real-time information in a stand-alone operative mode. This approach is based on single time differences of suitable linear combinations of GNSS carrier-phase measurements, using a stand-alone GNSS receiver and standard GNSS broadcast products (orbits and clocks corrections) that are available in real-time. This thesis investigates the possibility to apply the Variometric Approach to the monitoring of the ionosphere, in order to detect in real-time ionospheric disturbances generated by tsunami. The first chapter of this thesis will serve as a preface to define fundamental concepts that we will refer to throughout the rest of this work. The rest of this thesis is divided into two main parts. In the first part (chapter~\ref{sec:VADASE}), we present some advances and applications of the VADASE (Variometric Approach for Displacements Analysis Standalone Engine) algorithm to estimate in real time ground velocities and displacements using stand-alone GNSS receivers. This algorithm was eventually appointed as an effective strategy to contribute to GNSS seismology. In this section we used the 2016 Meinong earthquake occurred in Taiwan as a case study and we estimated coseismic displacements and propagation properties of the surface waves in a real-time scenario using low-cost GNSS receivers. The second part of this work (chapters \ref{sec:VARION}, \ref{sec:rtscenario}, and \ref{sec:VARIONimpementation}) is devoted to a new GNSS processing algorithm, VARION (Variometric Approach for Real-Time Ionosphere Observation), which is capable of estimating changes in the ionosphere's Total Electron Content (TEC) using stand-alone GNSS receivers in real time. In chapter~\ref{sec:rtscenario}, the effectiveness of VARION was proven on the following study cases: 2012 Haida Gwaii earthquake and tsunami event, 2015 Chile earthquake and tsunami event, 2013 U.S. East Coast meteotsunami event, and 2017 Mexico tsunami and geomagnetic storm events. Finally, some conclusions and relevant prospects for future VARION developments are outlined. VARION may represent a significant contribution to science because the ionosphere is strongly coupled to the dynamics of the Earth's surface, neutral atmosphere, and geomagnetic field. In particular, these ionospheric perturbations can be used to detect in real time detection atmospheric gravity waves due to tsunamis. During the NASA funded GNSS Tsunami Early Warning System 2017 workshop held in Sendai, Japan, July 25-27 2017, the VARION algorithm was appointed as the first real-time GNSS tsunami tracking and warning system based upon NASA's Global Differential GPS system

    Precursor-Like Anomalies prior to the 2008 Wenchuan Earthquake: A Critical-but-Constructive Review

    Get PDF
    Results published since the last three years on the observations of the precursor-like anomalies before the May 12, 2008, Wenchuan, Ms8.0 earthquake are collected and analyzed. These retrospective case studies would have provided heuristic clues about the preparation process of this inland great earthquake and the predictability of this destructive event if the standards for the rigorous test of earthquake forecast schemes were strictly observed. At least in some of these studies, however, several issues still need to be further examined to confirm or falsify the connection of the reported observations with the Wenchuan earthquake. Some of the problems are due to the inevitable limitation of observational infrastructure at the recent time, but some of the problems are due to the lack of communication about the test of earthquake forecast schemes. For the interdisciplinary studies on earthquake forecast, reminding of the latter issue seems of special importance for promoting the works and cooperation in this field
    • …
    corecore