184 research outputs found

    An Investigation on Software-Defined Networks’ Reactive Routing against BitTorrent

    Get PDF
    International audienceTechnologies in Software-Defined Networks (SDNs) introduce program-matic ways to reorganize the network logical topology. A possible practical usage of SDNs is Reactive Routing, where the logical topology is continuously evolving based on traffic statistics and policies. Usually, the SDNs controllers are considered transparent to the higher layers. It is expected that changes in logical topology may not affect applications. Our goal is to study the impact of logical topology changes on BitTorrent, a popular peer-to-peer protocol in practice. In this paper, we focus on BitTorrent and the experimental results show that BitTorrent may produce the opposite effect to the one expected. We have run 32 BitTorrent clients in an emulated SDN ring topology and changed the virtual topology periodically by removing one link at the time from the ring. The experiments produced lower propagation when logical topology changed periodically than when it was static for BitTorrent traffic. For comparison, we recreated the same experiments using HTTP. For HTTP, we obtained slower propagation when logical topology changed than when it was static. We discuss the results and conclude that high layer protocols need to be carefully studied, and in some cases adapted, before being deployed in SDNs

    An architectural framework for self-configuration and self-improvement at runtime

    Get PDF
    [no abstract

    On-demand content delivery on spontaneous mobile mesh networks

    Get PDF
    Dissertação de mestrado em Engenharia InformáticaToday there is a vast number of mobile devices. These devices allow people to access services everywhere. Typically a network infrastructure is required to support these services, like a wireless access point or a 3G connection. Sometimes such infrastructure may not exist or may not be available, making services impossible to operate. Ad-hoc networks allow infrastructure-less communication where each device can communicate with other devices from the network without depending on some infrastructure. These networks can be explored in order to provide services. For example, content delivery in case there is no infrastructure available to support the communication. The main objective of this work is to take advantage of the potential of ad-hoc networks to provide some services related with content access. The goal is to achieve a framework that is able to explore ad-hoc networks to successfully deliver content to every interested user. Besides, it should be able to work in different devices and operating systems. In this work, a fully functional framework prototype was implemented, requiring minimal configuration. The result is an off-the-shelf application that needs only a Java Virtual Machine (JVM) to operate. In order to successfully forward content between nodes from the server to the destination, a new routing model was developed that is exclusively based on content IDs instead of addresses. We used HTTP as presentation layer of the framework. This way we enable the customization of the interface by the server. Each user that is already familiarized with HTML pages can easily interact with our system.Hoje em dia existe um grande número de dispositivos móveis que permitem o acesso a serviços em qualquer lado. Para suportar esses serviços é necessária uma infra-estrutura de rede, como por exemplo, um ponto de acesso sem fios ou uma ligação 3G. Quando essa infra-estrutura é inexistente ou não está disponível, os serviços tornam-se inacessíveis. As redes ad-hoc possibilitam a comunicação independente de qualquer infra-estrutura. Estas redes podem ser exploradas por forma a fornecer serviços, tais como o acesso a conteúdo, no caso de não existir uma infra-estrutura de comunicação. O objectivo principal é tirar partido das redes ad-hoc para fornecer serviços de acesso a conteúdo. Queremos obter uma plataforma capaz de fornecer conteúdos aos utilizadores interessados, explorando as redes ad-hoc. Para além disso, deve também ser capaz de operar em diferentes dispositivos e sistemas operativos. Neste trabalho foi implementado um protótipo da plataforma completamente funcional. O resultado final é uma aplicação pronta a ser utilizada, que necessita apenas de uma Java Virtual Machine (JVM). Foi desenhado um novo modelo de encaminhamento baseado, exclusivamente, em IDs de conteúdo, por forma a encaminhar o tráfego entre servidor e cliente. Utilizamos o HTTP como camada de apresentação, dessa forma, o servidor pode ‘desenhar’ o interface. A interacção com o sistema é bastante simples no caso do utilizador estar familiarizado com as páginas HTML

    Systems-compatible Incentives

    Get PDF
    Originally, the Internet was a technological playground, a collaborative endeavor among researchers who shared the common goal of achieving communication. Self-interest used not to be a concern, but the motivations of the Internet's participants have broadened. Today, the Internet consists of millions of commercial entities and nearly 2 billion users, who often have conflicting goals. For example, while Facebook gives users the illusion of access control, users do not have the ability to control how the personal data they upload is shared or sold by Facebook. Even in BitTorrent, where all users seemingly have the same motivation of downloading a file as quickly as possible, users can subvert the protocol to download more quickly without giving their fair share. These examples demonstrate that protocols that are merely technologically proficient are not enough. Successful networked systems must account for potentially competing interests. In this dissertation, I demonstrate how to build systems that give users incentives to follow the systems' protocols. To achieve incentive-compatible systems, I apply mechanisms from game theory and auction theory to protocol design. This approach has been considered in prior literature, but unfortunately has resulted in few real, deployed systems with incentives to cooperate. I identify the primary challenge in applying mechanism design and game theory to large-scale systems: the goals and assumptions of economic mechanisms often do not match those of networked systems. For example, while auction theory may assume a centralized clearing house, there is no analog in a decentralized system seeking to avoid single points of failure or centralized policies. Similarly, game theory often assumes that each player is able to observe everyone else's actions, or at the very least know how many other players there are, but maintaining perfect system-wide information is impossible in most systems. In other words, not all incentive mechanisms are systems-compatible. The main contribution of this dissertation is the design, implementation, and evaluation of various systems-compatible incentive mechanisms and their application to a wide range of deployable systems. These systems include BitTorrent, which is used to distribute a large file to a large number of downloaders, PeerWise, which leverages user cooperation to achieve lower latencies in Internet routing, and Hoodnets, a new system I present that allows users to share their cellular data access to obtain greater bandwidth on their mobile devices. Each of these systems represents a different point in the design space of systems-compatible incentives. Taken together, along with their implementations and evaluations, these systems demonstrate that systems-compatibility is crucial in achieving practical incentives in real systems. I present design principles outlining how to achieve systems-compatible incentives, which may serve an even broader range of systems than considered herein. I conclude this dissertation with what I consider to be the most important open problems in aligning the competing interests of the Internet's participants

    The 7th Conference of PhD Students in Computer Science

    Get PDF

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    Structured Peer-to-Peer Overlays for NATed Churn Intensive Networks

    Get PDF
    The wide-spread coverage and ubiquitous presence of mobile networks has propelled the usage and adoption of mobile phones to an unprecedented level around the globe. The computing capabilities of these mobile phones have improved considerably, supporting a vast range of third party applications. Simultaneously, Peer-to-Peer (P2P) overlay networks have experienced a tremendous growth in terms of usage as well as popularity in recent years particularly in fixed wired networks. In particular, Distributed Hash Table (DHT) based Structured P2P overlay networks offer major advantages to users of mobile devices and networks such as scalable, fault tolerant and self-managing infrastructure which does not exhibit single points of failure. Integrating P2P overlays on the mobile network seems a logical progression; considering the popularities of both technologies. However, it imposes several challenges that need to be handled, such as the limited hardware capabilities of mobile phones and churn (i.e. the frequent join and leave of nodes within a network) intensive mobile networks offering limited yet expensive bandwidth availability. This thesis investigates the feasibility of extending P2P to mobile networks so that users can take advantage of both these technologies: P2P and mobile networks. This thesis utilises OverSim, a P2P simulator, to experiment with the performance of various P2P overlays, considering high churn and bandwidth consumption which are the two most crucial constraints of mobile networks. The experiment results show that Kademlia and EpiChord are the two most appropriate P2P overlays that could be implemented in mobile networks. Furthermore, Network Address Translation (NAT) is a major barrier to the adoption of P2P overlays in mobile networks. Integrating NAT traversal approaches with P2P overlays is a crucial step for P2P overlays to operate successfully on mobile networks. This thesis presents a general approach of NAT traversal for ring based overlays without the use of a single dedicated server which is then implemented in OverSim. Several experiments have been performed under NATs to determine the suitability of the chosen P2P overlays under NATed environments. The results show that the performance of these overlays is comparable in terms of successful lookups in both NATed and non-NATed environments; with Kademlia and EpiChord exhibiting the best performance. The presence of NATs and also the level of churn in a network influence the routing techniques used in P2P overlays. Recursive routing is more resilient to IP connectivity restrictions posed by NATs but not very robust in high churn environments, whereas iterative routing is more suitable to high churn networks, but difficult to use in NATed environments. Kademlia supports both these routing schemes whereas EpiChord only supports the iterating routing. This undermines the usefulness of EpiChord in NATed environments. In order to harness the advantages of both routing schemes, this thesis presents an adaptive routing scheme, called Churn Aware Routing Protocol (ChARP), combining recursive and iterative lookups where nodes can switch between recursive and iterative routing depending on their lifetimes. The proposed approach has been implemented in OverSim and several experiments have been carried out. The experiment results indicate an improved performance which in turn validates the applicability and suitability of ChARP in NATed environments

    Optimising Structured P2P Networks for Complex Queries

    Get PDF
    With network enabled consumer devices becoming increasingly popular, the number of connected devices and available services is growing considerably - with the number of connected devices es- timated to surpass 15 billion devices by 2015. In this increasingly large and dynamic environment it is important that users have a comprehensive, yet efficient, mechanism to discover services. Many existing wide-area service discovery mechanisms are centralised and do not scale to large numbers of users. Additionally, centralised services suffer from issues such as a single point of failure, high maintenance costs, and difficulty of management. As such, this Thesis seeks a Peer to Peer (P2P) approach. Distributed Hash Tables (DHTs) are well known for their high scalability, financially low barrier of entry, and ability to self manage. They can be used to provide not just a platform on which peers can offer and consume services, but also as a means for users to discover such services. Traditionally DHTs provide a distributed key-value store, with no search functionality. In recent years many P2P systems have been proposed providing support for a sub-set of complex query types, such as keyword search, range queries, and semantic search. This Thesis presents a novel algorithm for performing any type of complex query, from keyword search, to complex regular expressions, to full-text search, over any structured P2P overlay. This is achieved by efficiently broadcasting the search query, allowing each peer to process the query locally, and then efficiently routing responses back to the originating peer. Through experimentation, this technique is shown to be successful when the network is stable, however performance degrades under high levels of network churn. To address the issue of network churn, this Thesis proposes a number of enhancements which can be made to existing P2P overlays in order to improve the performance of both the existing DHT and the proposed algorithm. Through two case studies these enhancements are shown to improve not only the performance of the proposed algorithm under churn, but also the performance of traditional lookup operations in these networks

    Private and censorship-resistant communication over public networks

    Get PDF
    Society’s increasing reliance on digital communication networks is creating unprecedented opportunities for wholesale surveillance and censorship. This thesis investigates the use of public networks such as the Internet to build robust, private communication systems that can resist monitoring and attacks by powerful adversaries such as national governments. We sketch the design of a censorship-resistant communication system based on peer-to-peer Internet overlays in which the participants only communicate directly with people they know and trust. This ‘friend-to-friend’ approach protects the participants’ privacy, but it also presents two significant challenges. The first is that, as with any peer-to-peer overlay, the users of the system must collectively provide the resources necessary for its operation; some users might prefer to use the system without contributing resources equal to those they consume, and if many users do so, the system may not be able to survive. To address this challenge we present a new game theoretic model of the problem of encouraging cooperation between selfish actors under conditions of scarcity, and develop a strategy for the game that provides rational incentives for cooperation under a wide range of conditions. The second challenge is that the structure of a friend-to-friend overlay may reveal the users’ social relationships to an adversary monitoring the underlying network. To conceal their sensitive relationships from the adversary, the users must be able to communicate indirectly across the overlay in a way that resists monitoring and attacks by other participants. We address this second challenge by developing two new routing protocols that robustly deliver messages across networks with unknown topologies, without revealing the identities of the communication endpoints to intermediate nodes or vice versa. The protocols make use of a novel unforgeable acknowledgement mechanism that proves that a message has been delivered without identifying the source or destination of the message or the path by which it was delivered. One of the routing protocols is shown to be robust to attacks by malicious participants, while the other provides rational incentives for selfish participants to cooperate in forwarding messages
    corecore