3 research outputs found

    Semisupervised Soft Mumford-Shah Model for MRI Brain Image Segmentation

    Get PDF
    One challenge of unsupervised MRI brain image segmentation is the central gray matter due to the faint contrast with respect to the surrounding white matter. In this paper, the necessity of supervised image segmentation is addressed, and a soft Mumford-Shah model is introduced. Then, a framework of semisupervised image segmentation based on soft Mumford-Shah model is developed. The main contribution of this paper lies in the development a framework of a semisupervised soft image segmentation using both Bayesian principle and the principle of soft image segmentation. The developed framework classifies pixels using a semisupervised and interactive way, where the class of a pixel is not only determined by its features but also determined by its distance from those known regions. The developed semisupervised soft segmentation model turns out to be an extension of the unsupervised soft Mumford-Shah model. The framework is then applied to MRI brain image segmentation. Experimental results demonstrate that the developed framework outperforms the state-of-the-art methods of unsupervised segmentation. The new method can produce segmentation as precise as required

    Investigation on an EM framework for partial volume image segmentation

    No full text
    This work investigates a new partial volume (PV) image segmentation framework with comparison to a previous PV approach. The new framework utilizes an expectation-maximization (EM) algorithm to estimate simultaneously (1) tissue fractions in each image voxel and (2) statistical model parameters of the image data under the principle of maximum a posteriori probability (MAP). The previous EM approach models the PV effect by down-sampling a voxel and then labels each subvoxel as a pure tissue type, where the number of subvoxels labeled by a given tissue type over the total number of subvoxels reflects the fraction of that tissue type inside the original voxel. The tissue fractions in each voxel in this discrete PV model are represented by a limited number of percentage values. In the new MAP-EM approach, the PV effect is modeled in a continuous space and estimated directly as the fraction of each tissue type in the original voxel. The previous discrete PV model would converge to the proposed continuous PV tissue-mixture model if there is an infinite number of subvoxels within a voxel. However, in practice a voxel is usually downsampled once or twice for computational reasons. A simulation study reveals that the continuous PV model is not only more realistic but also more accurate than the discrete PV model

    Investigation on an EM framework for partial volume image segmentation

    No full text
    corecore