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One challenge of unsupervised MRI brain image segmentation is the central gray matter due to the faint contrast with respect to
the surrounding white matter. In this paper, the necessity of supervised image segmentation is addressed, and a softMumford-Shah
model is introduced.Then, a framework of semisupervised image segmentation based on softMumford-Shah model is developed.
The main contribution of this paper lies in the development a framework of a semisupervised soft image segmentation using both
Bayesian principle and the principle of soft image segmentation.The developed framework classifies pixels using a semisupervised
and interactive way, where the class of a pixel is not only determined by its features but also determined by its distance from those
known regions. The developed semisupervised soft segmentation model turns out to be an extension of the unsupervised soft
Mumford-Shah model. The framework is then applied to MRI brain image segmentation. Experimental results demonstrate that
the developed framework outperforms the state-of-the-art methods of unsupervised segmentation. The new method can produce
segmentation as precise as required.

1. Introduction

In recent years, MRI based medical image processing and
analysis have been studied widely. Among these researches,
segmentation is at the first stage and is fundamental for
poster processing and analysis. One of the most important
applications in medical image processing is MRI brain image
segmentation. It has been noticed that, by calculating changes
of volumes of different brain tissues (called white matter, gray
matter, and cerebrospinal fluid in image processing), some
brain related diseases can be found at their early stage [1].
However, there are two challenges in calculating the volumes
of differentmatters inMRI brain images. One challenge is the
calculation of partial volumes appearing usually at the border
of different tissues, due to limited resolution [2–5]; another
challenge is the segmentation of central graymatter due to the
faint contrast with respect to the surrounding white matter
[6]. This paper addresses the later challenge.

Central gray matter lies in the central area of brains. Its
intensity is usually very close to the white matter located not

in central areas. In detail, the intensity of central gray matter
is a little smaller than the intensity of white matter located in
central area, but usually very close to or even greater than the
intensity of this white matter near the outer layer. As a result,
it is deficient for intensity based unsupervised segmentation
methods in distinguishing central gray matter from white
matter for MRI brain images.

In general, unsupervised methods explore the intrinsic
data features to partition an image into regions with different
statistics. The segmentation procedure can be implemented
using some assigned algorithm automatically without human
beings’ interaction or interfering. There are several cases that
unsupervised methods either fail to work or are deficient.
One case is of intensity inhomogeneity. Another case is when
some parts of different classes have almost the same intensi-
ties or features. In the first case, it is solved by bias correction
methods [7, 8] or by stochastic methods [9, 10] or both [6].
When bias correction methods are used, the bias field is
always assumed smooth. When a bias field is not smooth,
an alternative way is to use stochastic methods treating pixel
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intensities as randomly distributed random variables. How-
ever, stochastic methods in dealing with bias only work well
when the bias is not strong. Nevertheless, some traditional
unsupervised methods can still work for the first case (with
bias). However, unsupervised segmentation methods usually
fail to work efficiently for the second case.

Different from unsupervised segmentation, supervised
image segmentation is a technique to partition an image using
either known images or known features of some parts of the
image to direct the segmentation.

Machine-learning based image segmentation is such a
method that uses a collection of known images having the
same type as a given image (to be segmented) to direct the
image segmentation [11, 12]. The direction is implemented
by a learning mechanic. The machine-leaning based image
segmentation methods are originated from general classifi-
cation methods. Such methods, when applied to image seg-
mentation, deal with each pixel as an isolated object without
considering the relation to its neighbors such as smoothness
of the intensities inside a class. Moreover, the methods are
usually based on algorithms, not based on a mathematical
model, and therefore mathematically less precise.

Another way for supervised segmentation is to use some
patches of a given image to direct the image segmentation. It
assigns some regions for each class in advance based on prior
knowledge and then uses the features of the known regions
as constraints to model image segmentation. A class of such
methods is supervised image matting [13–15]. Image matting
studies the problem of accurate foreground estimation in
images and videos. It is essentially a two-phase image seg-
mentation and usually deals with natural images that are very
complicated. During image matting, supervised methods are
usually used by assigning some regions as foreground and
then use the assigned regions as reference to help extract the
foreground. Image matting also provides interactive segmen-
tation. Interactive method is also discussed in the famous
Grabcut [16] method which deals with an image as a graph
under discrete settings.

There are two shortcomingswhenusing supervised image
matting for image segmentation. First, image matting works
only for images with two classes and assumes that the image is
a linear combination of background and foreground. Second,
there is no theoretical proof addressing why a supervised
or interactive matting method is more reliable than an
unsupervised image matting. Results are claimed better only
based on visual effect.

Mumford-Shah model is a multiphase image segmenta-
tion model that has been extensively investigated [10, 17–
22]. Original Mumford-Shah model assumes an image to be
a piecewise smooth function [23]. Later researches usually
assume each piece of the function to have some special
property such as piecewise polynomial [24]. Most often, the
image in a Mumford-Shah model is assumed to be piecewise
constant [18–20]. In the later case, the model is sometimes
implemented under the assumption that the mean of each
class is known based on prior knowledge. Since the assump-
tion of piecewise constant is too strong and may limit its
application, some varied forms of Mumford-Shah model are
also developed [8, 22, 25].

Considering that soft segmentationmodel is usuallymore
flexible andmakes it possible to produce a globally optimized
result, Jianhong Shen extendedMumford-Shahmodel for soft
segmentation [10], where each pixel can partly belong tomore
than one class. Membership functions are used in the model
to denote the percentage or probability that a pixel belongs to
each class. The value of a membership function at some pixel
𝑥 can be viewed as either the probability of the pixel belonging
to the corresponding class such as fuzzy segmentation model
[26, 27] or the percentage of the pixel belonging to the cor-
responding class such as partial volume segmentation [5, 28–
30].

In this paper, a soft version of the piecewise constant
Mumford-Shah model is introduced. Then, a frame work
of semisupervised and interactive image segmentation is
developed based on the soft piecewise constant Mumford-
Shahmodel using Bayesian principle.The developedmodel is
proved to be an extension of the general unsupervised soft
Mumford-Shah model. The semisupervised and interactive
framework can produce segmentation result as precise as
required.The rest of the paper is organized as below. Section 2
addresses the importance of supervised segmentation meth-
ods and its basic idea. For a given synthetic image, different
segmentation results are presented when different methods,
an unsupervised method, and a supervised method are
used. Section 3 introduces the development of the proposed
framework. Section 4 presents the numerical analysis and
algorithm implementation.The efficiency of the framework is
shown in Section 5 using experiments, where the application
to MRI brain images is especially introduced. Finally, some
comments, conclusion, and future work are addressed in
Section 6.

2. Introduction to
Semisupervised Segmentation

Unsupervised image segmentation utilizes the inherent image
features to partition an image into different classes such that
the pixels in the same class share the same or similar features
while pixels in different classes have quite different features.
The lowest level image feature is image intensity. Most of the
unsupervised image segmentation models directly use image
intensities to classify pixels. The advantage of unsupervised
image segmentation is well-known. For example, it is fast; it
does not need human’s interaction; even the number of classes
is not required to be known before implementation. Mean-
while, the disadvantages are also well-known. For example, in
Mumford-Shahmodel, if the number of classes is unknown, it
is hard to give an expected result: different numbers of classes
will lead to different segmentation results. Another example is
the initialization during the implementation for a nonconvex
model.When amodel is nonconvex, the implementation usu-
ally leads to a local minimizer that may not be the expected
result. There are also other shortcomings for unsupervised
image segmentation. Some shortcomings can be or has been
resolved by new mathematical methods. For example, when
the number of classes is unknown, Chiu [31] and Wang [32]
proposed different ways to solve the problem under an unsu-
pervised setting. However, some drawback of unsupervised
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Figure 1: Synthetic image.

image segmentation could not be solved due to the inherent
features of digital images. For example, when the pixels in the
same class have quite different intensities or pixels in different
classes have very close intensities, it is generally impossible to
achieve an ideal result using an unsupervised segmentation
model that is based on intensities only (this statement is not
really true for texture image segmentation). Figure 1 shows
the difference at an extreme case.

Figure 1 is a binary image. In our common sense, the
image in Figure 1 contains two classes: the background (black
part) and the foreground (white parts). Obviously, the fore-
ground contains two parts. Any unsupervised image segmen-
tation can easily segment the image into two classes.However,
we are going to rethink the problemunder a different assump-
tion. Assume that we are only interested in the left white part
and assume that the right white part is actually a part of the
background which is blocked by something or presents quite
different intensity for some reason and therefore should not
be classified as the foreground.We are interested in obtaining
segmentation for the foreground that contains only the left
white part by running the code of an algorithm. In this sense,
we mean to achieve segmentation with a foreground (see
Figure 2) directly after running the code.

It is almost impossible for any unsupervised image
segmentation method to achieve such a result only based on
intensities of the image.The framework of the semisupervised
and interactive image segmentation addressed in this paper
is to provide a way to achieve such image segmentation by
assigning some regions of the image to each specific class
before implementation.Themain idea for the semisupervised
image segmentation that is developed in this paper is to
introduce a classification strategy in which each pixel is
classified based on not only its intensity but also the distances
that the pixel is from those known regions. If a pixel’s intensity
is closer to class𝐴 but its position is closer to a known region
that belongs to a different class, say class 𝐵, then it is very
possible that the pixel will be classified into class 𝐵, rather
than class 𝐴.

For example, we can draw two regions in the image, red
mask and greenmask, as shown in Figure 3, and assign the red
region to be the foreground and the green region to be the
background. The red mask contains only white pixels while
the green mask contains both black region and white region.

Figure 2: Expected foreground.

Figure 3: The region of red mask is assigned to the foreground and
the green mask is assigned to be the background.

Using the method developed in this paper, those regions that
are also white but closer to the green mask are classified
to background, rather than the foreground. Therefore, the
resulted segmentation for the foreground contains only the
left white part as shown in Figure 2 after using the proposed
frame work.

3. Model Development

In this section, we start from two-phase images to model
semisupervised segmentation using conditional probability.
Then, we extend it to multiphase image segmentation.

3.1. Conditional Probability in a Semisupervised Image Seg-
mentation. Let 𝐼 be an image with domainΩ. Suppose 𝐼 con-
tains two classes 𝐴 and 𝐵, and 𝑥, 𝑦 ∈ Ω. For 𝐶

1
, 𝐶
2
∈ {𝐴, 𝐵},

the conditional probability that 𝑥 ∈ 𝐶
2
providing 𝑦 ∈ 𝐶

1
is

given by

𝑃 (𝑥 ∈ 𝐶
2
| 𝑦 ∈ 𝐶

1
) =

𝑃 (𝑥 ∈ 𝐶
2
, 𝑦 ∈ 𝐶

1
)

𝑃 (𝑦 ∈ 𝐶
1
)

. (1)

In a semisupervised image segmentation, some regions are
already assigned with class labels, called known regions. The
task of supervised image segmentation is to determine the
class for each pixel 𝑥 in unknown regions based on the
features of 𝐼(𝑥) and the features of the intensities of those
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pixels in known regions. When 𝑦 is in a known region and
assigned with class label 𝐶

1
, we have 𝑃(𝑦 ∈ 𝐶

1
) = 1. So, (1) is

reduced to

𝑃 (𝑥 ∈ 𝐶
2
| 𝑦 ∈ 𝐶

1
) = 𝑃 (𝑥 ∈ 𝐶

2
, 𝑦 ∈ 𝐶

1
) . (2)

Still based on conditional probability, we have

𝑃 (𝑥 ∈ 𝐶
2
, 𝑦 ∈ 𝐶

1
) = 𝑃 (𝑦 ∈ 𝐶

1
| 𝑥 ∈ 𝐶

2
) 𝑃 (𝑥 ∈ 𝐶

2
) . (3)

Therefore,

𝑃 (𝑥 ∈ 𝐶
2
| 𝑦 ∈ 𝐶

1
) = 𝑃 (𝑦 ∈ 𝐶

1
| 𝑥 ∈ 𝐶

2
) 𝑃 (𝑥 ∈ 𝐶

2
) (4)

provided 𝑦 ∈ 𝐶
1
is known.

Let us consider the case of 𝐶
1
= 𝐶
2
. Without loss of

generality, assume 𝐶
1
= 𝐶
2
= 𝐴. Combining (2) through (4)

and assuming that 𝑦 is labeled in class 𝐴, we have

𝑃 (𝑥 ∈ 𝐴 | 𝑦 ∈ 𝐴) = 𝑃 (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴)

= 𝑃 (𝑦 ∈ 𝐴 | 𝑥 ∈ 𝐴) 𝑃 (𝑥 ∈ 𝐴) .

(5)

In this case, the value of 𝑃(𝑥 ∈ 𝐴 | 𝑦 ∈ 𝐴) or 𝑃(𝑦 ∈ 𝐴 |

𝑥 ∈ 𝐴) depends on the similarity of the features of pixel 𝑥
and pixel 𝑦. The more their features are similar, the bigger
the conditional probability should be. In other words, we are
interested in the similarity between the feature of 𝐼(𝑥) and
the feature of 𝐼(𝑦). The right side of (5) can be characterized
by both the probability that 𝑥 belongs to class 𝐴 (namely,
𝑃(𝑥 ∈ 𝐴)) and the similarity between the feature of 𝐼(𝑥) and
the feature of 𝐼(𝑦) (namely, 𝑃(𝑦 ∈ 𝐴 | 𝑥 ∈ 𝐴)). That is, the
probability that both 𝑥 and 𝑦 belong to the same class 𝐴 is
proportional to the similarity between the feature of 𝐼(𝑥) and
the feature of 𝐼(𝑦) when the probability of 𝑥 ∈ 𝐴 is fixed. We
use exponential function 𝑒−𝛼‖𝑓(𝐼(𝑥))−𝑓(𝐼(𝑦))‖ to characterize the
similarity with 𝛼 ≥ 0, where 𝑓(⋅) is the function for features.
𝑓(𝐼(𝑥)) and 𝑓(𝐼(𝑦)) represent the features of pixels 𝑥 and
𝑦, respectively. The easiest feature function is of intensity;
namely, 𝑓(𝐼(𝑥)) = 𝐼(𝑥). We know that the exponential
function 𝑒−𝛼𝑡, 𝑡 ∈ (0,∞) lies in the range (0, 1] when the
parameter 𝛼 ≥ 0. Moreover, the function is decreasing and
reaches its maximum 1 at 𝑡 = 0 and approaches 0 when
𝑡 → ∞. That is, we have the following result relating to
𝑒
−𝛼‖𝑓(𝐼(𝑥))−𝑓(𝐼(𝑦))‖:

(1) 𝑒−𝛼‖𝑓(𝐼(𝑥))−𝑓(𝐼(𝑦))‖ ≈ 1when the feature of 𝐼(𝑥) and the
feature of 𝐼(𝑦) are very close.

(2) 𝑒−𝛼‖𝑓(𝐼(𝑥))−𝑓(𝐼(𝑦))‖ ≈ 0when the feature of 𝐼(𝑥) and the
feature of 𝐼(𝑦) are quite different.

Therefore, the expression 𝑒
−𝛼‖𝑓(𝐼(𝑥))−𝑓(𝐼(𝑦))‖

𝑃(𝑥 ∈ 𝐴) can
characterize the probability 𝑃(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴) very well.

By summarizing the discussion above, we have from (5)
that

𝑃 (𝑥 ∈ 𝐴 | 𝑦 ∈ 𝐴) = 𝑃 (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴)

= 𝑒
−𝛼‖𝑓(𝐼(𝑥))−𝑓(𝐼(𝑦))‖

𝑃 (𝑥 ∈ 𝐴)

(6)

provided 𝑦 ∈ 𝐴 is known, where 𝛼 ≥ 0 is a weight.The choice
of 𝛼 ∈ [0,∞) depends on the intensity scales in image 𝐼.

For a gray image 𝐼, the feature at some point 𝑥 can be
simply denoted by its intensity 𝐼(𝑥). Then, from (6), we have

𝑃 (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴) = 𝑒
−𝛼|𝐼(𝑥)−𝐼(𝑦)|

𝑃 (𝑥 ∈ 𝐴) . (7)

Together with (4), we have

𝑃 (𝑥 ∈ 𝐴 | 𝑦 ∈ 𝐴) = 𝑒
−𝛼|𝐼(𝑥)−𝐼(𝑦)|

𝑃 (𝑥 ∈ 𝐴) (8)

provided 𝑦 ∈ 𝐴 is known.
Suppose now that it is a region, not a pixel, that is assigned

to a class. In this case, we are interested in such a conditional
probability that 𝑃(𝑥 ∈ 𝐴 | 𝑅 ⊂ 𝐴), where 𝑅 is a region (a
collection of pixels) that belongs to class 𝐴. Similar to (8), we
use the following formula accordingly:

𝑃 (𝑥 ∈ 𝐴 | 𝑅 ⊂ 𝐴) = 𝑒
−𝛼|𝐼(𝑥)−𝑚𝑅|

𝑃 (𝑥 ∈ 𝐴) (9)

provided 𝑅 ⊂ 𝐴 is known, where𝑚
𝑅
is the mean intensity of

region 𝑅.

Extension to Multiphase Image Segmentation. Given an image
𝐼, suppose there are totally𝑁 classes, denoted by 𝐶

1
, 𝐶
2
, . . . ,

𝐶
𝑁
. According to (9), the conditional probability that 𝑥

belong to 𝐶
𝑖
given that 𝑅

𝑖
belongs to 𝐶

𝑖
can be characterized

by

𝑃 (𝑥 ∈ 𝐶
𝑖
| 𝑅
𝑖
⊂ 𝐶
𝑖
) = 𝑒
−𝛼‖𝐼(𝑥)−𝑚𝑅𝑖

‖
𝑃 (𝑥 ∈ 𝐶

𝑖
) , (10)

where 𝑅
𝑖
denotes the known region for the 𝑖th class.

3.2. Soft Mumford-Shah Model. Let Ω be an image domain
and let 𝐼 : Ω → R be a gray image. Let 𝑅

1
, 𝑅
2
, . . . , 𝑅

𝑁
be the

pairwise disjoint regions in Ω representing different classes
of the image and Γ

𝑖
the boundaries of each class. Then, the

classic𝑁-class piecewise smooth Mumford-Shah model is to
minimize the following energy functional (see [21, 23]):

𝐹
MS
(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑁
; 𝑅
1
, 𝑅
2
, . . . , 𝑅

𝑁
)

=

𝑁

∑

𝑖=1

(

1

2

∫

𝑅𝑖

(𝐼 − 𝑢
𝑖
)
2

𝑑𝑥 + 𝜆∫

Ω

󵄨
󵄨
󵄨
󵄨
∇𝑢
𝑖

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 + 𝜇
󵄨
󵄨
󵄨
󵄨
Γ
𝑖

󵄨
󵄨
󵄨
󵄨
) ,

(11)

where 𝑢(𝑥) = (𝑢
1
(𝑥), . . . , 𝑢

𝑁
(𝑥)) are patterns for each class

and |Γ
𝑖
| denotes the measure of the boundary. For a two-

dimensional image, |Γ
𝑖
| is the length of the boundary. The

parameters 𝜆 and 𝜇 are weights used to balance among the
fitting term, smoothness term, and the boundary term. By
minimizing the functional, the goal and essence of themiddle
term is to force each pattern 𝑢

𝑖
to be smooth. The length of

the boundary Γ
𝑖
can be expressed by the total variation of the

indication function of 𝑅
𝑖
; that is,

󵄨
󵄨
󵄨
󵄨
Γ
𝑖

󵄨
󵄨
󵄨
󵄨
= ∫

󵄨
󵄨
󵄨
󵄨
󵄨
∇
𝜒𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑥, (12)

where 𝜒
𝑖
is the indication function of 𝑅

𝑖
. It is well-known

that 𝐿1-norm based image diffusion is better than 𝐿2-norm
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based image diffusion in that 𝐿1-norm is anisotropic but 𝐿2-
norm is isotropic (see [33, 34]). In our developed model, the
𝐿2-norm of ∇𝑢

𝑖
is changed to 𝐿1-norm.Then, the Mumford-

Shahmodel in terms of 𝐿1-norm can be represented in terms
of 𝜒
𝑖
(𝑥) as below:

𝐹
MS
(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑁
; 𝑅
1
, 𝑅
2
, . . . , 𝑅

𝑁
)

=

𝑁

∑

𝑖=1

(

1

2

∫

Ω

(𝐼 − 𝑢
𝑖
)
2

𝜒
𝑖
𝑑𝑥 + 𝜆∫

Ω

󵄨
󵄨
󵄨
󵄨
∇𝑢
𝑖

󵄨
󵄨
󵄨
󵄨
𝑑𝑥

+ 𝜇∫

Ω

󵄨
󵄨
󵄨
󵄨
∇𝜒
𝑖

󵄨
󵄨
󵄨
󵄨
𝑑𝑥) .

(13)

In a soft segmentation, each point may not exclusively
belong to only one class. On the contrary, a point can partly
belong to more than one class, which can be expressed using
membership functions 𝑝

𝑖
(𝑥), 0 ≤ 𝑝

𝑖
(𝑥) ≤ 1. The value 𝑝

𝑖
(𝑥)

can be the percentage that 𝑥 belongs to the 𝑖th class such
as in applications of partial volume segmentation [5, 28] or
the probability that a pixel belongs to the 𝑖th class such as in
applications of fuzzy image segmentation [14, 26]. For more
details on soft segmentation, we refer readers to [10, 35]. A
soft Mumford-Shah model can be viewed as a modification
of the classic Mumford-Shah model by replacing the char-
acteristic function of each class to the membership function.
Accordingly, the corresponding softMumford-Shahmodel is
to minimize the energy functional 𝐸(𝑢, 𝑝 | 𝐼) defined by

𝐸 (𝑢, 𝑝 | 𝐼) =

1

2

𝑁

∑

𝑖=1

∫

Ω

(𝐼 (𝑥) − 𝑢
𝑖
(𝑥))
2

𝑝
𝑖
(𝑥) 𝑑𝑥

+ 𝜆

𝑁

∑

𝑖=1

∫

Ω

󵄨
󵄨
󵄨
󵄨
∇𝑢
𝑖
(𝑥)
󵄨
󵄨
󵄨
󵄨
𝑑𝑥

+ 𝜇

𝑁

∑

𝑖=1

∫

Ω

󵄨
󵄨
󵄨
󵄨
∇𝑝
𝑖
(𝑥)
󵄨
󵄨
󵄨
󵄨
𝑑𝑥,

(14)

with respect to patterns 𝑢(𝑥) = (𝑢
1
(𝑥), . . . , 𝑢

𝑁
(𝑥)) and mem-

bership functions 𝑝(𝑥) = (𝑝
1
(𝑥), . . . , 𝑝

𝑁
(𝑥)).

3.3. Framework of Semisupervised Image Segmentation Based
on Soft Mumford-Shah Model. In the framework of semisu-
pervised image segmentation addressed in this paper, it is
always assumeed that some subregion Ω

𝑖
is already known

for each class 𝐶
𝑖
, 1 ≤ 𝑖 ≤ 𝑁. That is,Ω

𝑖
⊂ 𝐶
𝑖
is already known

for some regionΩ
𝑖
. But the union of those known regionsΩ

𝑖

is not equal to Ω. In general, the union of Ω
𝑖
is much less

than Ω; that is, ⋃𝑁
𝑖=1
Ω
𝑖
≪ Ω. The task of the framework

is to determine the segmentation for the rest of the region
Ω
𝑈
= Ω − ⋃

𝑁

𝑖=1
Ω
𝑖
based on their intensity distribution and

the intensity distribution of the known regions.
Let 𝑝

𝑖
(𝑥 | Ω

𝑖
) denote the probability that 𝑥 belongs

to the 𝑖th class 𝐶
𝑖
provided Ω

𝑖
⊂ 𝐶
𝑖
is known. Then, the

semisupervised softMumford-Shah model based on (14) can
be described by minimizing the following energy functional:

𝐸 (𝑢, 𝑝 | 𝐼) =

1

2

𝑁

∑

𝑖=1

∫

Ω𝑈

(𝐼 (𝑥) − 𝑢
𝑖
(𝑥))
2

𝑝
𝑖
(𝑥 | Ω

𝑖
) 𝑑𝑥

+ 𝜆

𝑁

∑

𝑖=1

∫

Ω𝑈

󵄨
󵄨
󵄨
󵄨
∇𝑢
𝑖
(𝑥)
󵄨
󵄨
󵄨
󵄨
𝑑𝑥

+ 𝜇

𝑁

∑

𝑖=1

∫

Ω𝑈

󵄨
󵄨
󵄨
󵄨
∇𝑝
𝑖
(𝑥)
󵄨
󵄨
󵄨
󵄨
𝑑𝑥.

(15)

Using (10) to denote the conditional probability 𝑝
𝑖
(𝑥 |

Ω
𝑖
), we have

𝐸 (𝑢, 𝑝 | 𝐼)

=

1

2

𝑁

∑

𝑖=1

∫

Ω𝑈

(𝐼 (𝑥) − 𝑢
𝑖
(𝑥))
2

𝑝
𝑖
(𝑥) 𝑒
−𝛼|𝐼(𝑥)−𝑚𝑖(𝑥)|

𝑑𝑥

+ 𝜆

𝑁

∑

𝑖=1

∫

Ω𝑈

󵄨
󵄨
󵄨
󵄨
∇𝑢
𝑖
(𝑥)
󵄨
󵄨
󵄨
󵄨
𝑑𝑥 + 𝜇

𝑁

∑

𝑖=1

∫

Ω𝑈

󵄨
󵄨
󵄨
󵄨
∇𝑝
𝑖
(𝑥)
󵄨
󵄨
󵄨
󵄨
𝑑𝑥,

(16)

where 𝑚
𝑖
(𝑥) is the mean intensity for those pixels that are

closest to 𝑥 and in the 𝑖th known regionΩ
𝑖
.

It is interesting to notice that the supervised soft Mum-
ford-Shah model (16) turns out to be the unsupervised soft
Mumford-Shah model when 𝛼 = 0. Therefore, the developed
model is a generalization of the unsupervised soft Mumford-
Shah model.

4. Algorithm and Implementation

In the developed model, there are two sets of variables to be
determined, the patterns𝑢

𝑖
(𝑥) and themembership functions

𝑝
𝑖
(𝑥). In order to solve for these variables, we need to

calculate 𝑚
𝑖
(𝑥) first. The task of the semisupervised image

segmentation in this paper is to determine the unknown
regions supposing some known regions are given for each
class. In the developed model, we use the means𝑚

𝑖
of known

regionsΩ
𝑖
to determine the class of each pixel in the unknown

region. Due to the inhomogeneity such as bias, the means of
different regions for a same class can be different. Based on
this thinking, we choosemeans𝑚

𝑖
in themodel for each pixel

𝑥not as the overallmean of all known regions for 𝑖th class, but
the mean for the known region that is closest to 𝑥.

The Euler-Lagrange equations of 𝑝
𝑖
(𝑥) is

−𝜇 div(
∇𝑝
𝑖

󵄨
󵄨
󵄨
󵄨
∇𝑝
𝑖

󵄨
󵄨
󵄨
󵄨

) + (𝑢
𝑖
− 𝐼)
2

𝑒
−𝛼|𝐼−𝑚𝑖(𝑥)|

= 0. (17)
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We choose primal-dual hybrid gradient algorithm
(PDHG) [36] to solve the equation for 𝑝

𝑖
(𝑥).The primal-dual

form with respect to 𝑝
𝑖
is

min
𝑝∈Δ𝑁−1

max
|𝑞|≤1

𝐸 (𝑢; 𝑝, 𝑞)

=

1

2

𝑁

∑

𝑖=1

∫

Ω𝑈

(𝐼 (𝑥) − 𝑢
𝑖
(𝑥))
2

𝑝
𝑖
(𝑥) 𝑒
−𝛼|𝐼(𝑥)−𝑚𝑖(𝑥)|

𝑑𝑥

+ 𝜆

𝑁

∑

𝑖=1

∫

Ω𝑈

𝑝
𝑖
(𝑥) div 𝑞

𝑖
𝑑𝑥.

(18)

The iterations on 𝑝 and 𝑞 are

𝜕𝑝
𝑖

𝜕𝑡

= − [(𝑢
𝑖
− 𝐼)
2

𝑒
−𝛼|𝐼(𝑥)−𝑚𝑖(𝑥)|

+ 𝜇 div 𝑞
𝑖
] ,

𝜕𝑞
𝑖

𝜕𝑡

= −𝜇∇𝑝
𝑖
.

(19)

Similarly, 𝑢
𝑖
(𝑥) can also be solved using a PDHGbased on

a primal-dual form of the energy functional with respect to
𝑢
𝑖
(𝑥). However, such a solution will lead to a less supervised

segmentation where the information of the known regions
can not be utilized sufficiently. We assume the following
nearest point principle to solve for 𝑢

𝑖
(𝑥).

4.1. Nearest Point Principle. The iteration of patterns 𝑢
𝑖
(𝑥)

is performed not based on the Euler-Lagrange equation, but
based on its nearest congeneric points. That is,

𝑢
𝑖
(𝑥)

= average {𝑢
𝑖
(𝑦) | 𝑦 = argmin

𝑦
{
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
, 𝑦 ∈ Ω

𝑖
}} .

(20)

Note that the membership functions are still updated in
an unsupervised way in the framework. In order to achieve a
more supervised segmentation result, we determine the class
of each pixel at the decision-making step not only based on
the membership values 𝑝

𝑖
(𝑥) but also based on the similarity

between the intensity 𝐼(𝑥) and each pattern 𝑢
𝑖
(𝑥), 1 ≤ 𝑖 ≤ 𝑁.

In our framework, the membership functions 𝑝
𝑖
(𝑥)

solved from the above iterations (see (19)) are actually
temporary ones. We then update the memberships based on
the following rule: if 𝑝

𝑖
(𝑥) > 0.95 and 𝐼(𝑥) ≈ 𝑢

𝑖
(𝑥) for some

1 ≤ 𝑖 ≤ 𝑁 and 𝑥 ∈ Ω
𝑈
, then put 𝑥 toΩ+

𝑖
. So, the known parts

are updated by

Ω
𝑖
= Ω
𝑖
∪ Ω
+

𝑖
. (21)

Correspondingly, the unknown part is updated according to
the following equation:

Ω
𝑈
= Ω −

𝑁

⋃

𝑖=1

Ω
𝑖
. (22)

4.2. Algorithm. We now describe the complete algorithm.
Given an image 𝐼 defined in a domainΩ, if the image contains

𝑁 classes, then the complete algorithm for the semisuper-
vised multiphase image segmentation is given below.

(1) Initialization

(a) Initialize known partsΩ0
𝑖
using brushes.

(b) Initialize unknown part by Ω0
𝑈
= Ω − ⋃

𝑁

𝑖=1
Ω
0

𝑖
.

(c) Initialize memberships: For each 1 ≤ 𝑖 ≤ 𝑁 and 𝑥 ∈
Ω
0

𝑖
, set 𝑝0

𝑖
(𝑥) = 1 and 𝑝0

𝑗
(𝑥) = 0 for 𝑗 ̸= 𝑖; for 𝑥 ∈ Ω0

𝑈
,

set 𝑝
𝑖
(𝑥) randomly.

(d) Initialize patterns: For each 1 ≤ 𝑖 ≤ 𝑁 and 𝑥 ∈ Ω0
𝑖
,

set 𝑢0
𝑖
(𝑥) = 𝐼(𝑥); For any 𝑥 ∈ Ω0

𝑈
, set 𝑢0

𝑖
(𝑥) in terms

of the nearest point principle as (20).

(2) Iterations

(a) Update memberships 𝑝𝑘
𝑖
(𝑥) by (19).

(b) Update known areasΩ𝑘
𝑖
by (21).

(c) Update unknown areaΩ𝑘
𝑈
by (22).

(d) Update patterns 𝑢𝑘
𝑖
(𝑥) by (20).

(3) Termination. The iterations will be terminated if Ω
𝑈
= 0.

In our application, we terminated the iterations when Ω
𝑈
is

very small. In this case, the classes of thosepixels in the remain
undetermined region Ω

𝑈
will be determined simply using

thresholding the membership functions.

5. Experimental Results

In this part, we first use a natural image to show the difference
between supervised image segmentation and unsupervised
image segmentation. Then, an application to MRI brain
images is elaborated.

In Figure 4, we present a comparison of a flower seg-
mentation between using unsupervised Mumford-Shah seg-
mentation and using the proposed semisupervised soft
Mumford-Shah model. The first row is about unsupervised
segmentation and the second row is about semisupervised
segmentation. (a1) is the original image of a flower, while
(a2) is the original image of a flower added with masks for
known regions, where the blue mask represents known fore-
ground (the flower region) and the yellow masks represent
background (nonflower region). (b1) shows the segmentation
of the flower using unsupervised method while (b2) shows
the segmentation of the flower using semisupervised method
(the proposedmethod).Themain difference lies in the center
of the flower. In (b1), the black part of the center of the
flower means it is misclassified to the background. However,
by using semisupervised method and marking some region
of the center of the flower, the flower can be well segmented
out (see (b2)).

Figure 5 shows the shrinking procedure of the unknown
area in the first 10 iterations in the flower segmentation, where
dark areas are unknown areas. From the graphs, we see that
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(a1)

(a2)

(b1)

(b2)

Figure 4: Comparison between segmentation models using supervised method and unsupervised method. (a1) Original image of a flower.
(a2) Original image of a flower with assigned class masks. (b1) Unsupervised segmentation for the flower. (b2) Semisupervised segmentation
for the flower.

Figure 5: Unknown area for the flower segmentation shrinks in the first ten iterations. Dark area represents unknown part. The iterations
converge very fast.
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the segmentation is almost done only after 10 iterations. For a
240 × 240 image, the iterations take around 3 seconds in our
laptop. However, if we use the corresponding unsupervised
method, the iterations will take around 38 seconds under the
same settings of convergence.

Before presenting the difference of MRI brain images
between unsupervised method and the supervised method,
let us see the challenges about such segmentation. One
major challenge in MRI brain image segmentation is the
central gray matter (also called deep gray matter) due to the
intensity similarity and closeness between white matter and
central gray matter. Figure 6 shows the comparison between
the unsupervised segmentation and the ground truth. In
Figure 6, (a1) and (a2) are the same original MRI brain image
(the skull is removed in the preprocessing). (b1), (c1), and
(d1) are the respective segmentation results for cerebrospinal
fluid (CSF), gray matter, and white matter using piecewise
constant soft Mumford-Shah model. (b2), (c2), and (d2) are
segmentation results revisedmanually under the instructions
of experienced radiologists, which is used as the ground truth
in the experiment. Note that the two CSFs are almost the
same. The major difference between the two sets of seg-
mentation results is in the central part for gray matters and
white matters. The white parts in (c1) and (c2) represent
gray matter segmentation while the white parts in (d1) and
(d2) represent white matter segmentation. By comparing the
unsupervised segmentation results and the ground truth, we
see that most of the gray matter in the central part, called
central gray matter, was misclassified as white matter when
the unsupervised Mumford-Shah model is applied.

Figure 7 shows the comparison between unsupervised
soft Mumford-Shah method and the developed method.
The figure contains three columns. The first column shows
the segmentation using the unsupervised soft Mumford-
Shah segmentation model; the second column is the seg-
mentation using the developed segmentation method; and
the third column is the segmentation obtained first with
the unsupervised method and then fixed under experienced
radiologists’ instructions (the ground truth). In the first
column, (a1) is the original image, and (b1) through (d1) are
the respective segmentation models of cerebrospinal fluid
(CSF), gray matter, and white matter, respectively. In the
second column, (a2) is the original image and (b2) through
(d2) are the respective segmentation models of CSF, gray
matter, and whitematter using the developed semisupervised
segmentation method. In the third column, (a3) is the image
withmasks drawn with hand by experienced radiologists and
(b3) through (d3) are segmentation models (ground truth)
obtained with the unsupervised segmentation method and
then fixed with the masks drawn in (a3).

From the results, we can easily see that the segmentation
results using supervised method is much better than the
results using unsupervised segmentation in the central part
of graymatter andwhitematter.The semisupervised segmen-
tation results (b2–d2) are very close to the ground truth (b3–
d3).

Figure 8 shows the comparison between using more
known regions and using less known regions. The first col-
umn shows the segmentation models using the developed

semisupervised segmentation method with less known
regions marked; the second column shows the segmentation
models also using the developed semisupervised segmenta-
tion method but with more known regions marked; and the
third column is the ground truth. In each column, from the
second row to the forth row are the segmentation models
of cerebrospinal fluid (CSF), gray matter, and white matter,
respectively. From the results, we see that the semisupervised
segmentation with more labeled regions is better than the
results with less labeled regions.The semisupervised segmen-
tation results (b2)–(d2) are closer to the ground truth than the
supervised segmentation results (b1)–(d1).

Next experiment shows the comparison among unsuper-
vised soft Mumford-Shah model, unsupervised Mumford-
Shah model with bias correction, the proposed semi-
supervised image segmentation, and the ground truth. In Fig-
ure 9, the first column shows the segmentation models using
unsupervised softMumford-Shahmodel, the second column
is the segmentationmodels usingMumford-Shahmodel with
bias correction, the third column is the segmentation using
the proposed method, and the forth column is the ground
truth. By comparing with the ground truth, we see that the
method with bias correction is only a little better than the
method without using bias correction. However, both results
are obviously weaker than using the proposed method.

Finally, we compared the computational efficiency of the
semisupervised method with the corresponding unsuper-
vised method. Figure 10 contains two curves denoting con-
vergence times (in seconds) for unsupervised soft Mumford-
Shahmodel and the developed supervised method applied to
the flower image shown in Figure 4.The experiment is carried
out with a Lenovo T400 laptop. In the figure, the horizontal
axis denotes the precision for the iterations to terminate and
the vertical axis denotes the time in seconds for the segmen-
tation to complete. The upper curve (blue curve) denotes the
convergence time using unsupervised soft Mumford-Shah
method while the lower curve denotes the convergence time
for the developed semisupervised method after the known
regions are marked. Obviously, the convergence for the
semisupervisedmethod ismuch faster than the unsupervised
method.

6. Background, Discussion, and Conclusion

Based on the development of the semisupervised segmen-
tation model, some regions must be assigned to each class
before the numerical implementation is performed. There-
fore, the results of semisupervised soft segmentation depends
on two aspects: the intensity distribution of the given image
and the known regions assigned. In case that the segmenta-
tion results are not satisfying, more regions can be assigned
to some classes until a satisfying result is obtained.

This work is motivated byMRI brain image segmentation
which is a part of our previous project supported by NIH
grant.The project has been closed in the summer of 2012. It is
well-known that, in the central area of a MRI brain image,
the intensities of gray matter are usually very close to the
intensities of white matter. Sometimes (actually very often),
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(c1)

(d1)

(a2)

(b2)

(c2)

(d2)

Figure 6: Comparison between unsupervised segmentation result and the ground truth.
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(a1)

(b1)

(c1)

(d1)

(a2)

(b2)

(c2)

(d2)

(a3)

(b3)

(c3)

(d3)

Figure 7: Comparison among unsupervised method, supervised method, and the ground truth.

the intensities of central graymatter are bigger than the inten-
sities of white matter not located in the central part. There-
fore, unsupervised segmentation methods cannot obtain the
expected result. Even for natural images, an object may have
the same intensities as some other objects nearby. Therefore,
semisupervised image segmentation is useful and necessary.

In a semisupervised image segmentation, it is necessary to
choose some regions for each class as known regions.This can
be done by embedding some code in the algorithm. However,
it is convenient to construct a software program to integrate
the function of choosing regions and semisupervised seg-
mentation algorithm. In our project, we developed a software
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Figure 8: Comparison among supervised method with less known regions, supervised method with more known regions, and the ground
truth.

program mainly for MRI brain image segmentation, where
the function for choosing some regions for each class is
embedded. Readers who are interested in it can refer to the
technical report [30]. For a three-dimensional image, one can
use the developed supervised method to segment all slices of

a 3D MRI brain image only by choosing some area as known
regions from just single slice or a few slices. In this way, a lot
of time can be saved.

The frame work of the developed semisupervised image
segmentation is based on intensities for gray-level images as
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(d4)
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(a2)

(b2)
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(b1)

(c1)

(d1)

Figure 9: Comparison among unsupervised soft Mumford-Shah model, Mumford-Shah model with bias correction, supervised Mumford-
Shah model, and the ground truth.

shown in Model (16). Nevertheless, the work can be easily
extended to color images. Although the framework of super-
vised image segmentation developed in this paper is based on
Mumford-Shah model, it can be easily extended to any other
image segmentation model. For example, when the image
contains some texture features, the framework does not work
very efficiently. In this case, feature-basedmodelmust be used
in the frame work. Let 𝐹 : Ω ⊂ R𝑛 → 𝑍 ⊂ R𝑚 be a function

which maps an 𝑛-dimensional image domain to a multidi-
mensional (𝑚-dimensional) space of contextual features 𝑍.
For each point 𝑥 ∈ Ω, 𝐹(𝑥) is a vector containing image
statistics or features. Such features can encode contextual
knowledge about the regions of interest and their neighboring
structures (e.g., size, shape, orientation, and relationships to
neighboring structures). Feature-based image segmentation
is extensively used in texture segmentation and somemedical
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Figure 10: Comparison of convergence rates between an unsuper-
vised method and the corresponding supervised method.

image segmentation. Therefore, an immediate future work is
to develop a frame work for feature-based supervised multi-
phase image segmentation.
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