2,161 research outputs found

    Improving rotorcraft survivability to RPG attack using inverse methods

    Get PDF
    This paper presents the results of a preliminary investigation of optimal threat evasion strategies for improving the survivability of rotorcraft under attack by rocket propelled grenades (RPGs). The basis of this approach is the application of inverse simulation techniques pioneered for simulation of aggressive helicopter manoeuvres to the RPG engagement problem. In this research, improvements in survivability are achieved by computing effective evasive manoeuvres. The first step in this process uses the missile approach warning system camera (MAWS) on the aircraft to provide angular information of the threat. Estimates of the RPG trajectory and impact point are then estimated. For the current flight state an appropriate evasion response is selected then realised via inverse simulation of the platform dynamics. Results are presented for several representative engagements showing the efficacy of the approach

    Analyzing helicopter evasive maneuver effectiveness against rocket-propelled grenades

    Get PDF
    It has long been acknowledged that military helicopters are vulnerable to ground-launched threats, in particular, the RPG-7 rocket-propelled grenade. Current helicopter threat mitigation strategies rely on a combination of operational tactics and selectively placed armor plating, which can help to mitigate but not entirely remove the threat. However, in recent years, a number of active protection systems designed to protect land-based vehicles from rocket and missile fire have been developed. These systems all use a sensor suite to detect, track, and predict the threat trajectory, which is then employed in the computation of an intercept trajectory for a defensive kill mechanism. Although a complete active protection system in its current form is unsuitable for helicopters, in this paper, it is assumed that the active protection system’s track and threat trajectory prediction subsystem could be used offline as a tool to develop tactics and techniques to counter the threat from rocket-propelled grenade attacks. It is further proposed that such a maneuver can be found by solving a pursuit–evasion differential game. Because the first stage in solving this problem is developing the capability to evaluate the game, nonlinear dynamic and spatial models for a helicopter, RPG-7 round, and gunner, and evasion strategies were developed and integrated into a new simulation engine. Analysis of the results from representative vignettes demonstrates that the simulation yields the value of the engagement pursuit–evasion game. It is also shown that, in the majority of cases, survivability can be significantly improved by performing an appropriate evasive maneuver. Consequently, this simulation may be used as an important tool for both designing and evaluating evasive tactics and is the first step in designing a maneuver-based active protection system, leading to improved rotorcraft survivability

    Trajectory optimization and guidance law development for national aerospace plane applications

    Get PDF
    The work completed to date is comprised of the following: a simple vehicle model representative of the aerospace plane concept in the hypersonic flight regime, fuel-optimal climb profiles for the unconstrained and dynamic pressure constrained cases generated using a reduced order dynamic model, an analytic switching condition for transition to rocket powered flight as orbital velocity is approached, simple feedback guidance laws for both the unconstrained and dynamic pressure constrained cases derived via singular perturbation theory and a nonlinear transformation technique, and numerical simulation results for ascent to orbit in the dynamic pressure constrained case

    Aerodynamic shape optimization of guided missile based on wind tunnel testing and computational fluid dynamics simulation

    Get PDF
    This paper presents modcation of the existing guided missile which was done by replacing the existing front part with the new five, while the rear part of the missile with rocket motor and missile thrust vector control system remains the same. The shape of all improved front parts is completely different from the original one. Modification was performed based on required aerodynamic coefficients for the existing guided missile. The preliminary aerodynamic configurations of the improved missile front parts were designed based on theoretical and computational fluid dynamics simulations. All aerodynamic configurations were tested in the T-35 wind tunnel at the Military Technical Institute in order to determine the final geometry of the new front parts. The 3-D Reynolds averaged Navier-Stokes numerical simulations were carried out to predict the aerodynamic loads of the missile based on the finite volume method. Experimental results of the axial force, normal force, and pitching moment coefficients are presented. The computational results of the aerodynamic loads of a guided missile model are also given, and agreed well with

    Index for aerodynamic data from the Bumblebee program

    Get PDF
    The Bumblebee program, was designed to provide a supersonic guided missile. The aerodynamics program included a fundamental research effort in supersonic aerodynamics as well as a design task in developing both test vehicles and prototypes of tactical missiles. An index of aerodynamic missile data developed in this program is presented

    Air intakes for a probative missile of rocket ramjet

    Get PDF
    The methods employed to test air intakes for a supersonic guided ramjet powered missile being tested by ONERA are described. Both flight tests and wind tunnel tests were performed on instrumented rockets to verify the designs. Consideration as given to the number of intakes, with the goal of delivering the maximum pressure to the engine. The S2, S4, and S5 wind tunnels were operated at Mach nos. 1.5-3 for the tests, which were compartmentalized into fuselage-intake interaction, optimization of the intake shapes, and the intake performance. Tests were performed on the length and form of the ogive, the presence of grooves, the height of traps in the boundary layer, the types and number of intakes and the lengths and forms of diffusers. Attention was also given to the effects of sideslip, effects of the longitudinal and circumferential positions of the intakes were also examined. Near optimum performance was realized during Mach 2.2 test flights of the prototype rockets

    Adaptive Navigation, Guidance and Control Techniques Applied to Ballistic Projectiles and Rockets

    Get PDF
    Accuracy and precision are the cornerstone for ballistic projectiles from the earliest days of this discipline. In the beginnings, impact point precision in artillery devices deteriorated when range were extended, particularly for non-propelled artillery rockets and shells. Later, inertial navigation and guidance systems are introduced and precision was unlinked from range increases. In the last 30 years, hybridization between inertial systems and GNSS devices has improved precision enormously. Unfortunately, during the last stages of flight, inertial and GNSS methods (hybridized or not) feature big errors on attitude and position determination. Low cost devices, which are precise on terminal guidance and do not feature accumulative error, such as quadrant photo-detector, seem to be appropriate to be included on the guidance systems. Hybrid algorithms, which combine GNSSs, IMUs and photodetectors, and a novel technic of attitude determination, which avoids the use of gyroscopes, are presented in this chapter. Hybridized measurements are implemented on modified proportional navigation law and a rotatory force control method. A realistic non-linear flight dynamics model has been developed to perform simulations to prove the accuracy of the presented algorithms

    Aeronautical Engineering: A special bibliography with indexes, supplement 54

    Get PDF
    This bibliography lists 316 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1975

    Bank-to-turn control technology survey for homing missiles

    Get PDF
    The potential advantages of bank-to-turn control are summarized. Recent and current programs actively investigating bank-to-turn steering are reviewed and critical technology areas concerned with bank-to-turn control are assessed

    CFD Simulations and External Shape Optimization of Missile with Wing and Tailfin Configuration to Improve Aerodynamic Performance

    Get PDF
    The wing of missile can be considered as an effective factor for determination of lift to drag ratio. However, there are few studies that investigate wing effect on missile aerodynamics. Therefore, the purpose of this study is to indicate wing effect on the missile aerodynamics and optimize wing geometry for enhancement of aerodynamic efficiency. The missile designed tail-fin configuration is selected from a previous study which contains experimental data. In the beginning of study, Computational Fluid Dynamics (CFD) simulations of selected missile are performed and compared with experimental data. Wing is then mounted to the selected missile and CFD solution is repeated for modified missile at 6o angle of attach (AoA) and subsonic and supersonic speeds. The modified missile shows good performance in point of aerodynamics when compared with baseline missile model. In addition, wing geometry is optimized to improve aerodynamic performance using Multi-Objective Genetic Algorithm (MOGA). Objective functions are determined as lift and drag coefficients. Wing geometry parameters are determined as design variables for optimization. After the optimization process, the results are showed that the aerodynamic coefficients are improved when compared with baseline geometry. In addition, response surface analysis is presented to show which design parameters are more effective on drag and lift forces. The findings of study show that optimum results are more efficient in terms of performance. CFD solution method and the optimization procedure can be applied to design or optimize for different geometry
    • …
    corecore