3,042 research outputs found

    Timeslack-based techniques for generating robust projectschedules subject to resource uncertainty.

    Get PDF
    The classical, deterministic resource-constrained project scheduling problem has been the subject of a great deal of research during the previous decades. This is not surprising given the high practical relevance of this scheduling problem. Nevertheless, extensions are needed to be better able to cope with situations arising in practice such as multiple activity execution modes, activity duration changes and resource breakdowns. In this paper we analytically determine the impact of unexpected resource breakdowns on activity durations. Furthermore, using this information we develop an approach for inserting explicit idle time into the project schedule in order to protect it as well as possible from disruptions caused by resource unavailabilities. This strategy will be compared to a traditional simulation-based procedure and to a heuristic developed for the case of stochastic activity durations.Uncertainty; Project scheduling; Scheduling; Research; Impact; Information; Time; Order; IT; Strategy; Heuristic;

    Robust scheduling and robustness measures for the discrete time/cost trade-off problem

    Get PDF
    Cataloged from PDF version of article.Projects are often subject to various sources of uncertainties that have a negative impact on activity durations and costs. Therefore, it is crucial to develop effective approaches to generate robust project schedules that are less vulnerable to disruptions caused by uncontrollable factors. In this paper, we investigate the robust discrete time/cost trade-off problem, which is a multi-mode project scheduling problem with important practical relevance. We introduce surrogate measures that aim at providing an accurate estimate of the schedule robustness. The pertinence of each proposed measure is assessed through computational experiments. Using the insights revealed by the computational study, we propose a two-stage robust scheduling algorithm. Finally, we provide evidence that the proposed approach can be extended to solve a complex robust problem with tardiness penalties and earliness revenues. 2010 Elsevier B.V. All rights reserved

    Proactive resource allocation heuristics for robust project scheduling.

    Get PDF
    The well-known deterministic resource-constrained project scheduling problem (RCPSP) involves the determination of a predictive schedule (baseline schedule or pre-schedule) of the project activities that satisfies the finish-start precedence relations and the renewable resource constraints under the objective of minimizing the project duration. This pre-schedule serves as a baseline for the execution of the project. During execution, however, the project can be subject to several types of disruptions that may disturb the baseline schedule. Management must then rely on a reactive scheduling procedure for revising or reoptimizing the pre-schedule. The objective of our research is to develop procedures for allocating resources to the activities of a given baseline schedule in order to maximize its stability. We propose two integer programming based heuristics and report on computational results obtained on a set of benchmark problems.

    Robust & decentralized project scheduling

    Get PDF

    Simulated Clinical Trias: some design issues

    Get PDF
    Simulation is widely used to investigate real-world systems in a large number of fields, including clinical trials for drug development, since real trials are costly, frequently fail and may lead to serious side effects. This paper is a survey of the statistical issues arising in these simulated trials. We illustrate the broad applicability of this investigation tool by means of examples selected from the literature. We discuss the aims and the peculiarities of the simulation models used in this context, including a brief mention of the use of metamodels. Of special interest is the topic of the design of the virtual experiments, stressing similarities and differences with the design of real life trials. Since it is important for a computerized model to possess a satisfactory range of accuracy consistent with its intended application, real data provided by physical experiments are used to confirm the simulator : we illustrate validating techniques through a number of examples. We end the paper with some challenging questions on the scientificity, ethics and effectiveness of simulation in the clinical research, and the interesting research problem of how to integrate simulated and physical experiments in a clinical context.Simulation models; pharmacokinetics; pharmacodynamics; model validation; experimental design, ethics. Modelli di simulazione; farmacocinetica; farmacodinamica; validazione; disegno degli esperimenti; etica.

    Robustness and stability measures for scheduling: Single-machine environment

    Get PDF
    This paper addresses the issue of finding robust and stable schedules with respect to random disruptions. Specifically, two surrogate measures for robustness and stability are developed. The proposed surrogate measures, which consider both busy and repair time distributions, are embedded in a tabu-search-based scheduling algorithm, which generates schedules in a single-machine environment subject to machine breakdowns. The performance of the proposed scheduling algorithm and the surrogate measures are tested under a wide range of experimental conditions. The results indicate that one of the proposed surrogate measures performs better than existing methods for the total tardiness and total flowtime criteria in a periodic scheduling environment. A comprehensive bibliography is also presented

    Personaneinsatz- und Tourenplanung für Mitarbeiter mit Mehrfachqualifikationen

    Get PDF
    In workforce routing and scheduling there are many applications in which differently skilled workers must perform jobs that occur at different locations, where each job requires a particular combination of skills. In many such applications, a group of workers must be sent out to provide all skills required by a job. Examples are found in maintenance operations, the construction sector, health care operations, or consultancies. In this thesis, we analyze the combined problem of composing worker groups (teams) and routing these teams under goals expressing service-, fairness-, and cost-objectives. We develop mathematical optimization models and heuristic solution methods for an integrated solution and a sequential solution of the teaming- and routing-subproblems . Computational experiments are conducted to identify the tradeoff of better solution quality and computational effort

    Proactive resource allocation heuristics for robust project scheduling.

    Get PDF
    The well-known deterministic resource-constrained project scheduling problem (RCPSP) involves the determination of apredictive schedule (baseline schedule or pre-schedule)of the project activities that satisfies the finish-start precedence relations and the renewable resource constraints under the objective of minimizing the project duration. This pre-schedule serves as a baseline for the execution of the project. During execution, however, the project can be subject to several types of disruptions that may disturb the baseline schedule. Management must then rely on a reactive scheduling procedure for revising or reoptimizing the pre-schedule. The objective of our research is to develop procedures for allocating resources to the activities of a given baseline schedule in order to maximize its stability in the presence of activity duration variability. We propose three integer programming based heuristics and one constructive procedure for resource allocation. We derive lower bounds for schedule stability and report on computational results obtained on a set of benchmark problems.Research; Resource allocation; Project scheduling; Heuristics; Scheduling;
    corecore