3 research outputs found

    Optimization Design and Development of Sensing Coil and Analog Signal Conditioning Electronics for Fluxgate Magnetometer Sensor

    Get PDF
    The design of fluxgate magnetometers is typically a nonlinear multi-objective optimization problem. Different objectives often conflict with each other, and sometimes an optimal Fluxgate Magnetometer Sensor (FMS) performance is difficult to achieve. The sensitivity of the sensor decreases with an increase of noise level while trying to reduce the sensor dimension. Hence, there is need for a systematic optimization approach for FMS design to find its optimum performance. The combined modified multi-objective Firefly Optimization Algorithm (FOA) and systematic optimization approach is suggested to improve FMS’s design in this research by simultaneously optimizing the sensitivity and noise of a FMS while the sensor core, pick-up coil, and detection circuit are minimized. The developed model allowed improved sensitivity of 86.65%, reduction of noise level by 59.97% while still keeping the sensor size small by 14.29%. Keywords: Fluxgate magnetometer sensor, noise, sensitivity, firefly optimization algorithm. DOI: 10.7176/ISDE/10-4-03 Publication date:May 31st 201

    Investigation and Optimization of the Performance of an Air-Coil Sensor with a Differential Structure Suited to Helicopter TEM Exploration

    No full text
    An air-coil sensor (ACS) is a type of induction magnetometer used as a transducer to measure the variations of a magnetic field. This device is widely applied in helicopter transient electromagnetic method (TEM) exploration. Most helicopter TEM explorations generate common-mode noise and require extreme ACS specifications, both of which inevitably challenge geophysical explorations. This study proposes a differential air-core coil combined with a differential pre-amplifier to reduce the common-mode noise induced in exploration surveys. To satisfy the stringent performance requirements, including the geometric parameters and electrical specifications, the physical calculations in theory and the equivalent schematic of an ACS with noise location are investigated, respectively. The theory calculation and experimental result for the optimized ACS are then compared on the basis of a differential structure. Correspondingly, an ACS is constructed with a mass, resultant effective area, 3 dB bandwidth, signal-to-noise ratio, and normalized equivalent input noise of 2.5 kg, 5.5 m2 (diameter is 0.5 m), 71 kHz, 20 (the varying magnetic field strength is 1 nT/s), and 5.43 nV/m2, respectively. These data are superior to those of the traditional induction sensor 3D-3. Finally, a field experiment is performed with a fabricated sensor to show a valid measurement of the time-varying magnetic field of a helicopter TEM system based on the designed ACS
    corecore