35 research outputs found

    Monitoring Spent Nuclear Fuel in a Dry Cask Using Momentum Integrated Muon Scattering Tomography

    Full text link
    Nuclear materials accountability and nonproliferation are among the critical tasks to be addressed for the advancement of nuclear energy in the United States. Monitoring spent nuclear fuel is important to continue reliable stewardship of SNF storage. Cosmic ray muons have been acknowledged a promising radiographic tool for monitoring SNF due to their highly penetrative nature and high energy. Cosmic ray muons are more suitable and have been used for imaging large and dense objects. Despite their potential in various applications, the wide application of cosmic ray muons is limited by the naturally low intensity at sea level. To efficiently utilize cosmic ray muons in engineering applications, trajectory and momentum must be measured. Although various studies demonstrate that there is significant potential for measuring momentum in muon applications, it is still difficult to measure both muon scattering angle and momentum in the field. To fill this critical gap, a muon spectrometer using multilayer pressurized gas Cherenkov radiators was proposed. However, existing muon tomographic algorithms were developed assuming monoenergetic muon scattering and are not optimized for a measured polyenergetic momentum spectrum. In this work, we develop and evaluate a momentum integrated muon scattering tomography algorithm. We evaluate the algorithm on its capability to identify a missing fuel assembly from a SNF dry cask. Our results demonstrate that image resolution using MMST is significantly improved when measuring muon momentum and it can reduce monitoring time by a factor of 10 when compared to that of a conventional muon imaging technique in terms of systematically finding a missing FA.Comment: Transaction of American Nuclear Societ

    Integrated cosmic muon flux in the zenith angle range 0<cosθ<0.370 < \text{cos}\theta < 0.37 for momentum threshold up to 11.6 GeV/c

    Get PDF
    We have measured the cosmic muon flux in the zenith angle range<cosθ<0.37 with a detector comprising planes of scintillator hodoscope bars and iron blocks inserted between them. The muon ranges for up to 9.5 m-thick iron blocks allow the provision of muon flux data integrated over corresponding threshold momenta up to 11.6 GeV/c. Such a dataset covering the horizontal direction is extremely useful for a technique called muon radiography, where the mass distribution inside a large object is investigated from the cosmic muon distribution measured behind the object

    Principles and perspectives of radiographic imaging with muons

    Get PDF
    Radiographic imaging with muons, also called Muography, is based on the measurement of the absorption of muons, generated by the interaction of cosmic rays with the earth’s atmosphere, in matter. Muons are elementary particles with high penetrating power, a characteristic that makes them capable of crossing bodies of dimensions of the order of hundreds of meters. The interior of bodies the size of a pyramid or a volcano can be seen directly with the use of this technique, which can rely on highly segmented muon trackers. Since the muon flux is distributed in energy over a wide spectrum that depends on the direction of incidence, the main difference with radiography made with X-rays is in the source. The source of muons is not tunable, neither in energy nor in direction; to improve the signal-to-noise ratio, muography requires large instrumentation, long time data acquisition and high background rejection capacity. Here, we present the principles of the Muography, illustrating how radiographic images can be obtained, starting from the measurement of the attenuation of the muon flux through an object. It will then be discussed how recent technologies regarding artificial intelligence can give an impulse to this methodology in order to improve its results

    Towards an application of muon scattering tomography as a technique for detecting rebars in concrete

    Get PDF
    Inspection of the world's ageing population of reinforced concrete infrastructure is a multi-billion dollar problem. Historically, it has not been uncommon for structures to deviate from their designs,or for design drawings to be lost. This leaves asset managers the challenging task of making structural health assessments and maintenance decisions with incomplete knowledge. While current techniques for detecting rebars in concrete are typically limited to penetration depths of less than 50 cm, muon scattering tomography (MST) is a non-destructive, non-invasive technique which shows great promise for high-depth 3D concrete imaging. This paper uses Monte Carlo simulations to demonstrate that MST can be used to detect and locate 100 cm length rebars with a diameter of 33.7 ± 7.3 mm independently of the rebar's location within a concrete structure. This corresponds to a volume of inclusion of 894 ± 386 cm3. The volume of the inclusion can be reconstructed with a resolution of 5.4 ± 0.3% for volumes above 2 500 cm3. It is furthermore demonstrated that 30 mm diameter rebars can be distinguished as two separate objects provided their separation is more than 40–60 mm, and that single and double layers of rebars are distinguishable using the technique. It is anticipated that MST could inform practical studies which support more informed maintenance and modeling, eventually allowing digital twins to be created for a larger subset of historical steel and concrete structures

    Cosmic ray muons for spent nuclear fuel monitoring

    Get PDF
    There is a steady increase in the volume of spent nuclear fuel stored on-site (at reactor) as currently there is no permanent disposal option. No alternative disposal path is available and storage of spent nuclear fuel in dry storage containers is anticipated for the near future. In this dissertation, a capability to monitor spent nuclear fuel stored within dry casks using cosmic ray muons is developed. The motivation stems from the need to investigate whether the stored content agrees with facility declarations to allow proliferation detection and international treaty verification. Cosmic ray muons are charged particles generated naturally in the atmosphere from high energy cosmic rays. Using muons for proliferation detection and international treaty verification of spent nuclear fuel is a novel approach to nuclear security that presents significant advantages. Among others, muons have the ability to penetrate high density materials, are freely available, no radiological sources are required and consequently there is a total absence of any artificial radiological dose. A methodology is developed to demonstrate the applicability of muons for nuclear nonproliferation monitoring of spent nuclear fuel dry casks. Purpose is to use muons to differentiate between spent nuclear fuel dry casks with different amount of loading, not feasible with any other technique. Muon scattering and transmission are used to perform monitoring and imaging of the stored contents of dry casks loaded with spent nuclear fuel. It is shown that one missing fuel assembly can be distinguished from a fully loaded cask with a small overlapping between the scattering distributions with 300,000 muons or more. A Bayesian monitoring algorithm was derived to allow differentiation of a fully loaded dry cask from one with a fuel assembly missing in the order of minutes and negligible error rate. Muon scattering and transmission simulations are used to reconstruct the stored contents of sealed dry casks from muon measurements. A combination of muon scattering and muon transmission imaging can improve resolution and thus a missing fuel assembly can be identified for vertical and horizontal dry casks. The apparent separation of the images reveals that the muon scattering and transmission can be used for discrimination between casks, satisfying the diversion criteria set by IAEA
    corecore