71 research outputs found

    Safety of Simultaneous Scalp and Intracranial Electroencephalography Functional Magnetic Resonance Imaging

    Get PDF
    Understanding the brain and its activity is one of the great challenges of modern science. Normal brain activity (cognitive processes, etc.) has been extensively studied using electroencephalography (EEG) since the 1930’s, in the form of spontaneous fluctuations in rhythms, and patterns, and in a more experimentally-driven approach in the form of event-related potentials allowing us to relate scalp voltage waveforms to brain states and behaviour. The use of EEG recorded during functional magnetic resonance imaging (EEG-fMRI) is a more recent development that has become an important tool in clinical neuroscience, for example, for the study of epileptic activity. The primary aim of this thesis is to devise a protocol in order to minimise the health risks that are associated with simultaneous scalp and intracranial EEG during fMRI (S- icEEG-fMRI). The advances in this technique will be helpful in presenting a new imaging method that will allow the measurement of brain activity with unprecedented sensitivity and coverage. However, this cannot be achieved without assessing the safety implications of such a technique. Therefore, five experiments were performed to fulfil the primary aim. First, the safety of icEEG- fMRI using body transmit RF coil was investigated to improve the results of previous attempts using a head transmit coil at 1.5T. The results of heating increases during a high-SAR sequence were in the range of 0.2-2.4 °C at the contacts with leads positioned along the central axis inside the MRI bore. These findings suggest the need for careful lead placement. Second, also for the body transmit coil we compared the heating in the vicinity of icEEG electrodes placed inside a realistically-shaped head phantom following the addition of scalp EEG electrodes. The peak temperature change was +2.7 °C at the most superior icEEG electrode contact without scalp electrodes, and +2.1 °C at the same contact and the peak increase in the vicinity of a scalp electrode contact was +0.6 °C (location FP2). These findings show that the S-icEEG-fMRI technique is feasible if our protocol is followed carefully. Third, the heating of a realistic 3D model of icEEG electrode during MRI using EM computational simulation was investigated. The resulting peak 10 g averaged SAR was 20% higher than without icEEG. Moreover, the superior icEEG placed perpendicular to B0 showed significant local SAR increase. These results were in line with previous studies. Fourth, the possibility of simplifying a complete 8-contact with 8 wires depth icEEG electrode model into an electrode with 1-contact and 1 wire using EM simulations was addressed. The results showed similar patterns of averaged SAR values around the electrode tip during phantom and electrode position along Z for the Complete and Simplified models, except an average maximum at Z = ~2.5 W/kg for the former. The SAR values during insertion depth for the Simplified model were double those for the Complete model. The effect of extension cable length is in agreement with previous experiments. Fifth, further simulations were implemented using two more simplified models: 8-contact with 1 wire shared with all contact and 8-contact 1 wire connected to each contact at a time as well as the previously modelled simplified 1-contact 1 wire. Two sets of simulations were performed: with a single electrode and with multiple electrodes. For the single electrode, three scenarios were tested: the first simplified model used only, the second simplified models used only and the third model positioned in different 13 locations. The results of these simulations showed about 11.4-20.5-fold lower SAR for the first model than the second and 0.29-5.82-fold lower SAR for the first model than the complete model. The results also showed increased SAR for the electrode close to the head coil than the ones away from it. For the multiple electrodes, three scenarios were tested: two 1-contact and wire electrodes in different separations, multiple electrodes with their wires separated and multiple electrodes with their wires shorted. The results showed interaction between the two tested electrodes. The results of the multiple electrodes presented 2 to ~10 times higher SAR for the separated setup than the shorted. The comparison between the 1-contact with 1 wire model and the complete model is still unknown and more tests are required to show it. From the findings of this PhD research, we conclude that a body RF coil can be utilized for icEEG-fMRI at 1.5 T; however, the safety protocol has to be implemented. In addition, scalp EEG can be used in conjunction with icEEG electrodes inside the body RF coil at 1.5 T and the safety protocol has to be followed. Finally, it is feasible to perform EM computational simulations using realistic icEEG electrodes on a human model. However, simplifying the realistic icEEG electrode model might result in overestimations of the heating, although it is possible that the simplification of the model can help to simulate more complex implantations such as the implantation of multiple electrodes with their leads open circuited or short circuited, which can provide more information about the safety of implanted patients inside the MRI

    Simulated and experimental approaches to the development of novel test phantoms for radiofrequency heating of implanted medical devices

    Get PDF
    Magnetic resonance imaging (MRI) has cemented itself as the gold standard for imaging of soft tissues and is only increasing in popularity. Given the rising number of MRI scanners and medical device being implanted into patients, it is becoming increasingly likely that patients undergoing MRI will have an implanted medical device (IMD). The presence of an elongated metallic IMD inside a scanner could result in dangerous interactions with the radiofrequency fields during MRI, thus some of these IMDs preclude the patients from being scanned. Orthopedic devices typically fall into this category due to their high potential for RF induced heating, and typically perform poorly in the current standard test method for RF heating. That said, there exists a subset of orthopedic IMDs that still ‘fail’ the current safety testing by heating slightly above the current acceptance criterion. It is hypothesized that such IMDs are not truly a hazard to the patient but are likely failing due to the conservative nature of the current RF heating test (ASTM F2182-19a). In this thesis, novel test platforms are presented for more realistic evaluation of RF heating in orthopedic IMDs, which were used to experimentally challenge the behavior of their simulated counterparts. These test platforms were designed to address the simplifications in the current ASTM test standard that led to exaggerated heating compared to what is expected in patients, namely geometry/material mimicking and perfusion cooling. Heating of a sample implant was simulated (Sim4Life) in these novel test platforms, along with experimental verification of two phantoms to determine agreement with simulation. Simulations (and experimental work) indicated that IMD heating in these realistic phantoms could be anywhere from 20-50% lower than the current ASTM phantom, which is a reasonable estimate of the magnitude of the safety margin involved. It appears perfusion cooling is most effective at reducing IMD heating (compared to geometry/tissue mimicking differences), though improved experimental verification is required before these simulations can influence regulatory change. Introducing empirical evidence of perfusion cooling to regulatory conversations around implant safety would improve access to MRI for the millions living with such marginally unacceptable orthopedics

    Brain and Human Body Modelling 2021

    Get PDF
    This open access book describes modern applications of computational human modelling to advance neurology, cancer treatment, and radio-frequency studies including regulatory, safety, and wireless communication fields. Readers working on any application that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest models and techniques available to assess a given technology’s safety and efficacy in a timely and efficient manner. This is an Open Access book

    Brain and Human Body Modeling

    Get PDF
    This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields

    Brain and Human Body Modelling 2021

    Get PDF
    This open access book describes modern applications of computational human modelling to advance neurology, cancer treatment, and radio-frequency studies including regulatory, safety, and wireless communication fields. Readers working on any application that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest models and techniques available to assess a given technology’s safety and efficacy in a timely and efficient manner. This is an Open Access book

    Brain and Human Body Modeling

    Get PDF
    This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields

    Atténuation des interactions électromagnétiques entre le module de détection LabPET II et l’IRM

    Get PDF
    Les scanners TEP/IRM simultanés offrent une occassion unique d'examiner en même temps les propriétés anatomiques et fonctionnelles des tissus malins, tout en évitant l'incertitude des systèmes séquentiels de TEP/IRM. Cependant, le couplage électromagnétique entre les deux modalités constitue un défi important à relever. Ces interférences électromagnétiques entravent les performances du scanner et altèrent la qualité d'image de chaque modalité. Bien que les métaux possèdent d'excellentes propriétés de blindage contre les fréquences radioélectriques, ils ne constituent pas nécessairement une option de blindage appropriée pour modifier les champs magnétiques induisant des courants de Foucault dans les couches métalliques. En conséquence, il existe une demande considérable pour un nouveau matériau de protection et une approche originale pour retirer les pièces métalliques du champ de vision IRM. L’objectif de ce projet était d’initier les études en vue de la réalisation d’un scanner TEP/IRM simultané basé sur des modules de détection LabPET II hautement pixélisés afin d’obtenir une résolution spatiale millimétrique pour le cerveau humain et le chien. L'électronique LabPET II comprend des circuits intégrés à application spécifique dans lesquels le signal est numérisé à proximité de la photodiode à avalanche et offre un environnement moins sensible aux interférences électromagnétiques. Pour atteindre l'objectif principal, premièrement, l'effet du matériau métallique des modules de détection LabPET II sur les performances de la TEP et de l'IRM est examiné théoriquement. Les résultats confirment que les composants métalliques du module de détection LabPET II altèrent le champ magnétique, génèrent des courants de Foucault ce qui augmente leur température. Ensuite, les performances électroniques des modules de détection LabPET II sous l’influence de bobines d’IRM faites sur mesure sont examinées. La résolution en énergie et la résolution temporelle se détériorent en présence de bobines RF et de bobines à gradient en raison des perturbations électromagnétiques. Subséquemment, un module de détection LabPET II blindé par une fine couche de composite cuivre-argent est étudié, prouvant que le blindage contre les interférences électromagnétiques avec le composite rétablit les performances en TEP, fournissant moins d'induction par courants de Foucault. En outre, une nouvelle configuration de blindage basée sur un composite de couche flexible de nanotubes de carbone a été fabriquée pour limiter les interférences électromagnétiques. Les composites de nanotubes de carbone créent une couche hautement conductrice avec des chemins conducteurs minimaux, ce qui permet de réduire les courants de Foucault. Le principal résultat scientifique de ce projet est que le blindage composite empêche les interférences de basses et hautes fréquences et réduit l'induction de courants de Foucault, offrant ainsi la flexibilité nécessaire pour acquérir une séquence rapide de commutation de gradients. D'un point de vue technique, le module de détection LabPET II ainsi blindé présente une excellente performance dans un environnement de type IRM, ce qui permet de concevoir un insert TEP basé sur la technologie LabPET II.Abstract: Simultaneous PET/ MRI scanners provide a unique opportunity to investigate anatomical and functional properties of malignant tissues at the same time while avoiding the uncertainty of a sequential PET/MRI systems. However, electromagnetic coupling between the two modalities is a significant challenge that needs to be addressed. These electromagnetic interferences (EMI) hinder the performance of both scanners and distort the image quality of each modality. Although metals have excellent radio-frequency shielding properties, they are not necessarily an appropriate shielding option for altering magnetic fields that induce eddy currents in any metallic layer. Thus, there is a considerable demand for a new shielding material and an original approach to remove metallic parts from the MRI field of view. The objective of this project was to initiate the realization of a simultaneous PET/MRI scanner based on highly pixelated LabPET II detection modules to achieve millimeter spatial resolution for the human brain and dogs. The LabPET II electronics include application specific integrated circuits where the signal is digitized near the avalanche photodiode and offers an environment less susceptible to EMI. To fulfill the main aim, for the first time, the effect of the metallic material of LabPET II on PET and MRI performance was theoretically examined. Results confirm that metallic components of the LabPET II detection modules distort the magnetic field, generate eddy currents, and increase temperature. Then, the LabPET II electronics performance under the influence of custom-made MRI coils was investigated. Its energy and timing resolutions deteriorate in the presence of both RF and gradient signals because of EMIs. Thus, a LabPET II detection module shielded by a thin layer of the copper-silver composite was investigated, proving that shielding EMIs with the composite restores the PET performance, with less eddy current induction. Besides, a new shielding configuration based on a flexible layer of carbon nanotube (CNT) composite was fabricated to limit the EMIs. The CNT composite creates a highly conductive layer with minimal conductive paths that allows eddy currents to be decreased. The primary scientific outcome of this project is that the novel composite shielding rejects both low and high-frequency interferences and reduces eddy current induction, offering the flexibility to acquire a fast gradient switching sequence. From a technical point of view, the shielded LabPET II detection module demonstrates an excellent performance in an MRI-like environment supporting the feasibility of designing a PET-insert based on LabPET II technology

    Novel MRI Technologies for Structural and Functional Imaging of Tissues with Ultra-short Tâ‚‚ Values

    Get PDF
    Conventional MRI has several limitations such as long scan durations, motion artifacts, very loud acoustic noise, signal loss due to short relaxation times, and RF induced heating of electrically conducting objects. The goals of this work are to evaluate and improve the state-of-the-art methods for MRI of tissue with short Tâ‚‚, to prove the feasibility of in vivo Concurrent Excitation and Acquisition, and to introduce simultaneous electroglottography measurement during functional lung MRI
    • …
    corecore