7,064 research outputs found

    DeepWalk: Online Learning of Social Representations

    Full text link
    We present DeepWalk, a novel approach for learning latent representations of vertices in a network. These latent representations encode social relations in a continuous vector space, which is easily exploited by statistical models. DeepWalk generalizes recent advancements in language modeling and unsupervised feature learning (or deep learning) from sequences of words to graphs. DeepWalk uses local information obtained from truncated random walks to learn latent representations by treating walks as the equivalent of sentences. We demonstrate DeepWalk's latent representations on several multi-label network classification tasks for social networks such as BlogCatalog, Flickr, and YouTube. Our results show that DeepWalk outperforms challenging baselines which are allowed a global view of the network, especially in the presence of missing information. DeepWalk's representations can provide F1F_1 scores up to 10% higher than competing methods when labeled data is sparse. In some experiments, DeepWalk's representations are able to outperform all baseline methods while using 60% less training data. DeepWalk is also scalable. It is an online learning algorithm which builds useful incremental results, and is trivially parallelizable. These qualities make it suitable for a broad class of real world applications such as network classification, and anomaly detection.Comment: 10 pages, 5 figures, 4 table

    Adversarially Reweighted Sequence Anomaly Detection With Limited Log Data

    Get PDF
    In the realm of safeguarding digital systems, the ability to detect anomalies in log sequences is paramount, with applications spanning cybersecurity, network surveillance, and financial transaction monitoring. This thesis presents AdvSVDD, a sophisticated deep learning model designed for sequence anomaly detection. Built upon the foundation of Deep Support Vector Data Description (Deep SVDD), AdvSVDD stands out by incorporating Adversarial Reweighted Learning (ARL) to enhance its performance, particularly when confronted with limited training data. By leveraging the Deep SVDD technique to map normal log sequences into a hypersphere and harnessing the amplification effects of Adversarial Reweighted Learning, AdvSVDD demonstrates remarkable efficacy in anomaly detection. Empirical evaluations on the BlueGene/L (BG/L) and Thunderbird supercomputer datasets showcase AdvSVDD’s superiority over conventional machine learning and deep learning approaches, including the foundational Deep SVDD framework. Performance metrics such as Precision, Recall, F1-Score, ROC AUC, and PR AUC attest to its proficiency. Furthermore, the study emphasizes AdvSVDD’s effectiveness under constrained training data and offers valuable insights into the role of adversarial component has in the enhancement of anomaly detection

    Adversarial Attacks on Deep Neural Networks for Time Series Classification

    Full text link
    Time Series Classification (TSC) problems are encountered in many real life data mining tasks ranging from medicine and security to human activity recognition and food safety. With the recent success of deep neural networks in various domains such as computer vision and natural language processing, researchers started adopting these techniques for solving time series data mining problems. However, to the best of our knowledge, no previous work has considered the vulnerability of deep learning models to adversarial time series examples, which could potentially make them unreliable in situations where the decision taken by the classifier is crucial such as in medicine and security. For computer vision problems, such attacks have been shown to be very easy to perform by altering the image and adding an imperceptible amount of noise to trick the network into wrongly classifying the input image. Following this line of work, we propose to leverage existing adversarial attack mechanisms to add a special noise to the input time series in order to decrease the network's confidence when classifying instances at test time. Our results reveal that current state-of-the-art deep learning time series classifiers are vulnerable to adversarial attacks which can have major consequences in multiple domains such as food safety and quality assurance.Comment: Accepted at IJCNN 201

    Hybrid group anomaly detection for sequence data: application to trajectory data analytics

    Get PDF
    Many research areas depend on group anomaly detection. The use of group anomaly detection can maintain and provide security and privacy to the data involved. This research attempts to solve the deficiency of the existing literature in outlier detection thus a novel hybrid framework to identify group anomaly detection from sequence data is proposed in this paper. It proposes two approaches for efficiently solving this problem: i) Hybrid Data Mining-based algorithm, consists of three main phases: first, the clustering algorithm is applied to derive the micro-clusters. Second, the kNN algorithm is applied to each micro-cluster to calculate the candidates of the group's outliers. Third, a pattern mining framework gets applied to the candidates of the group's outliers as a pruning strategy, to generate the groups of outliers, and ii) a GPU-based approach is presented, which benefits from the massively GPU computing to boost the runtime of the hybrid data mining-based algorithm. Extensive experiments were conducted to show the advantages of different sequence databases of our proposed model. Results clearly show the efficiency of a GPU direction when directly compared to a sequential approach by reaching a speedup of 451. In addition, both approaches outperform the baseline methods for group detection.acceptedVersio

    A survey of machine learning methods applied to anomaly detection on drinking-water quality data

    Get PDF
    Abstract: Traditional machine learning (ML) techniques such as support vector machine, logistic regression, and artificial neural network have been applied most frequently in water quality anomaly detection tasks. This paper presents a review of progress and advances made in detecting anomalies in water quality data using ML techniques. The review encompasses both traditional ML and deep learning (DL) approaches. Our findings indicate that: 1) Generally, DL approaches outperform traditional ML techniques in terms of feature learning accuracy and fewer false positive rates. However, is difficult to make a fair comparison between studies because of different datasets, models and parameters employed. 2) We notice that despite advances made and the advantages of the extreme learning machine (ELM), application of ELM is sparsely exploited in this domain. This study also proposes a hybrid DL-ELM framework as a possible solution that could be investigated further and used to detect anomalies in water quality data
    • …
    corecore