1,065 research outputs found

    Plancherel Inversion as Unified Approach to Wavelet Transforms and Wigner functions

    Full text link
    We demonstrate that the Plancherel transform for Type-I groups provides one with a natural, unified perspective for the generalized continuous wavelet transform, on the one hand, and for a class of Wigner functions, on the other. The wavelet transform of a signal is an L2L^2-function on an appropriately chosen group, while the Wigner function is defined on a coadjoint orbit of the group and serves as an alternative characterization of the signal, which is often used in practical applications. The Plancherel transform maps L2L^2-functions on a group unitarily to fields of Hilbert-Schmidt operators, indexed by unitary irreducible representations of the group. The wavelet transform can essentiallly be looked upon as restricted inverse Plancherel transform, while Wigner functions are modified Fourier transforms of inverse Plancherel transforms, usually restricted to a subset of the unitary dual of the group. Some known results both on Wigner functions and wavelet transforms, appearing in the literature from very different perspectives, are naturally unified within our approach. Explicit computations on a number of groups illustrate the theory.Comment: 41 page

    Determination of the characteristic directions of lossless linear optical elements

    Full text link
    We show that the problem of finding the primary and secondary characteristic directions of a linear lossless optical element can be reformulated in terms of an eigenvalue problem related to the unimodular factor of the transfer matrix of the optical device. This formulation makes any actual computation of the characteristic directions amenable to pre-implemented numerical routines, thereby facilitating the decomposition of the transfer matrix into equivalent linear retarders and rotators according to the related Poincare equivalence theorem. The method is expected to be useful whenever the inverse problem of reconstruction of the internal state of a transparent medium from optical data obtained by tomographical methods is an issue.Comment: Replaced with extended version as published in JM

    Radon transform and pattern functions in quantum tomography

    Full text link
    The two-dimensional Radon transform of the Wigner quasiprobability is introduced in canonical form and the functions playing a role in its inversion are discussed. The transformation properties of this Radon transform with respect to displacement and squeezing of states are studied and it is shown that the last is equivalent to a symplectic transformation of the variables of the Radon transform with the contragredient matrix to the transformation of the variables in the Wigner quasiprobability. The reconstruction of the density operator from the Radon transform and the direct reconstruction of its Fock-state matrix elements and of its normally ordered moments are discussed. It is found that for finite-order moments the integration over the angle can be reduced to a finite sum over a discrete set of angles. The reconstruction of the Fock-state matrix elements from the normally ordered moments leads to a new representation of the pattern functions by convergent series over even or odd Hermite polynomials which is appropriate for practical calculations. The structure of the pattern functions as first derivatives of the products of normalizable and nonnormalizable eigenfunctions to the number operator is considered from the point of view of this new representation.Comment: To appear on Journal of Modern Optics.Submitted t

    On the computation of π\pi-flat outputs for differential-delay systems

    Full text link
    We introduce a new definition of π\pi-flatness for linear differential delay systems with time-varying coefficients. We characterize π\pi- and π\pi-0-flat outputs and provide an algorithm to efficiently compute such outputs. We present an academic example of motion planning to discuss the pertinence of the approach.Comment: Minor corrections to fit with the journal versio

    On the chiral perturbation theory for two-flavor two-color QCD at finite chemical potential

    Full text link
    We construct the chiral perturbation theory for two-color QCD with two quark flavors as an effective theory on the SO(6)/SO(5) coset space. This formulation turns out to be particularly useful for extracting the physical content of the theory when finite baryon and isospin chemical potentials are introduced, and Bose--Einstein condensation sets on.Comment: 10 pages, 1 eps figure, to be published in Mod. Phys. Lett.

    A local construction of the Smith normal form of a matrix polynomial

    Get PDF
    We present an algorithm for computing a Smith form with multipliers of a regular matrix polynomial over a field. This algorithm differs from previous ones in that it computes a local Smith form for each irreducible factor in the determinant separately and then combines them into a global Smith form, whereas other algorithms apply a sequence of unimodular row and column operations to the original matrix. The performance of the algorithm in exact arithmetic is reported for several test cases.Comment: 26 pages, 6 figures; introduction expanded, 10 references added, two additional tests performe

    Wigner's Space-time Symmetries based on the Two-by-two Matrices of the Damped Harmonic Oscillators and the Poincar\'e Sphere

    Full text link
    The second-order differential equation for a damped harmonic oscillator can be converted to two coupled first-order equations, with two two-by-two matrices leading to the group Sp(2)Sp(2). It is shown that this oscillator system contains the essential features of Wigner's little groups dictating the internal space-time symmetries of particles in the Lorentz-covariant world. The little groups are the subgroups of the Lorentz group whose transformations leave the four-momentum of a given particle invariant. It is shown that the damping modes of the oscillator correspond to the little groups for massive and imaginary-mass particles respectively. When the system makes the transition from the oscillation to damping mode, it corresponds to the little group for massless particles. Rotations around the momentum leave the four-momentum invariant. This degree of freedom extends the Sp(2)Sp(2) symmetry to that of SL(2,c)SL(2,c) corresponding to the Lorentz group applicable to the four-dimensional Minkowski space. The Poincar\'e sphere contains the SL(2,c)SL(2,c) symmetry. In addition, it has a non-Lorentzian parameter allowing us to reduce the mass continuously to zero. It is thus possible to construct the little group for massless particles from that of the massive particle by reducing its mass to zero. Spin-1/2 particles and spin-1 particles are discussed in detail.Comment: Latex 42 pages, 7 figures, to be published in the Symmetr
    corecore